
 by
 Ranjani.B,

 AP/CSE, EGSPEC

Contents

 XHTML Evolution of HTML and XHTML-
Standard XHTML Document Structure- Basic
Text Markup- Images-Hypertext Links-Lists-
Tables- Forms- Frames. Cascading Style Sheets
Introduction to CSS – Levels of Style Sheets-
Style Specification Formats- Selector Forms-
Property Value Forms – Font Properties- List
Properties – Color- Alignment of Text –
Background Images- Span and Div Tags.

What are Markup Languages?

 These markup languages are designed specifically to
work for web development. Today, it is a
foundation of the web and everything you see is the
combination of markup text, CSS and front end
scripts (interactivity) are based on mark up
languages. It is what creates the final web presence.
It sets the architecture of the website and gives it
structure. These mark up languages structures data.
Unlike other languages like Python or PHP or Ruby
that guide the behavior of the data and the
databases.

INTRODUCTION TO HTML

• With HTML you can create your own Web site.
• HTML stands for Hyper Text Markup Language.
• HTML is derived from a language SGML (Standard Graphics

Markup Language).
• The future of HTML is XML (eXtended Markup Language).
• HTML is not a programming language, it is a Markup

Language.
• A markup language is a set of markup tags.
• HTML uses markup tags to describe web pages.
• HTML is not case sensitive language.
• HTML documents contain HTML tags and plain text.

• HTML – Hyper Text Markup Language

• HTML documents describe web pages (Static
Web Page)

• HTML tags are keywords surrounded by angle
brackets like <html>

• HTML tags normally come in pairs like and

• The first tag in a pair is the start tag (opening
tags),

• the second tag is the end tag(closing tags)

Origins and Evolution of HTML

• Hypertext Markup Language

• Developed for the delivery of hypertext on the
WWW

• Built using SGML

• ASCII “Markup Language”

Recent Versions

• Tim Berners Lee – person who defined HTML in 1990 at CERN.
• HTML 2.0 – 1994

– launched World Wide Web Consortium(W3C) – standards for html

• HTML 4.0 – 1997
– Introduced many new features and deprecated many older features

• HTML 4.01 - 1999 - A cleanup of 4.0
• XHTML 1.0 – 2000

– Just 4.01 defined using XML, instead of SGML

• XHTML 1.1 – 2001
– Modularized 1.0, and drops frames

• XHTML 2.0 – development abandoned
• HTML 5.0

– Working Draft (not a W3C Recommendation yet)
– HTML and XHTML syntax

What Is XHTML?

• XHTML stands for
EXtensible HyperText Markup Language

• XHTML is almost identical to HTML

• XHTML is stricter than HTML

• XHTML is HTML defined as an XML application

• XHTML is supported by all major browsers

• XHTML was developed by combining the
strengths of HTML and XML.

• XHTML is HTML redesigned as XML.

Most Important Differences from

HTML
 • Document Structure

– XHTML DOCTYPE is mandatory
– The xmlns attribute in <html> is mandatory
– <html>, <head>, <title>, and <body> are mandatory

• XHTML Elements
– XHTML elements must be properly nested
– XHTML elements must always be closed
– XHTML elements must be in lowercase
– XHTML documents must have one root element

• XHTML Attributes
– Attribute names must be in lower case
– Attribute values must be quoted
– Attribute minimization is forbidden

How to Convert from HTML to XHTML

1. Add an XHTML <!DOCTYPE> to the first line

of every page

2. Add an xmlns attribute to the html element
of every page

3. Change all element names to lowercase

4. Close all empty elements

5. Change all attribute names to lowercase

6. Quote all attribute values

<!DOCTYPE> Is Mandatory

• An XHTML document must have an XHTML

DOCTYPE declaration.

• The <html>, <head>, <title>, and <body>
elements must also be present, and the xmlns
attribute in <html> must specify the xml
namespace for the document.

EXAMPLE

• This example shows an XHTML document with a minimum of required
tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>
 <title>Title of document</title>
</head>

 <body>
 some content
</body>

</html>

• XHTML Elements Must Be Properly Nested
– This is wrong

• <i>This text is bold and italic</i>

– This is correct
• <i>This text is bold and italic</i>

• XHTML Elements Must Always Be Closed
– This is wrong

• <p>This is a paragraph

• <p>This is another paragraph

– This is correct
• <p>This is a paragraph</p>

• <p>This is another paragraph</p>

• Empty Elements Must Also Be Closed
– This is wrong

• A break:

• A horizontal rule: <hr>
• An image:

– This is correct
• A break:

• A horizontal rule: <hr />
• An image:

• XHTML Elements Must Be In Lower Case
– This is wrong

• <BODY>
<P>This is a paragraph</P>
</BODY>

– This is correct
• <body>

<p>This is a paragraph</p>
</body>

• XHTML Attribute Names Must Be In Lower
Case

– This is wrong

• <table WIDTH="100%">

– This is correct

• <table width="100%">

• Attribute Values Must Be Quoted

– This is wrong

• <table width=100%>

– This is correct

• <table width="100%">

• Attribute Minimization Is Forbidden

– Wrong:

• <input type="checkbox" name="vehicle" value="car" ch
ecked />

– Correct:

• <input type="checkbox" name="vehicle" value="car" ch
ecked="checked" />

– Wrong:

• <input type="text" name="lastname" disabled />

– Correct:

• <input type="text" name="lastname" disabled="disable
d" />

HTML vs XHTML

HTML and XHTML are both languages in which
web pages are written. HTML is SGML-based
while XHTML is XML-based. They are like two
sides of the same coin. XHTML was derived
from HTML to conform to XML standards.
Hence XHTML is strict when compared to HTML
and does not allow user to get away with lapses
in coding and structure.

http://en.wikipedia.org/wiki/Standard_Generalized_Markup_Language
http://en.wikipedia.org/wiki/XML

HTML vs XHTML

S.No HTML XHTML

1 HTML or HyperText Markup
Language is the main markup
language for creating web pages
and other information that can be
displayed in a web browser.

XHTML (Extensible HyperText Markup
Language) is a family of XML markup
languages that mirror or extend versions
of the widely used Hypertext Markup
Language (HTML), the language in which
web pages are written.

2 .html, .htm .xhtml, .xht, .xml, .html, .htm

3 HTML is based on SGML. XHTML is based on XML.

4 HTML tags are case insensitive. XHTML tags are case sensitive.

HTML Parts

• An HTML document consists of 3 main parts
– DOCTYPE declaration
– <head> section
– <body> section
 <!DOCTYPE html>
 <html>
 <head>
 <title> …. </title>
 </head>
 <body>
 ….
 ….
 …
 </body>
 </html>

HTML Document Structure

• An HTML document is composed of 3 parts:
– 1. a line containing HTML version information, e.g.:

• <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN“
"http://www.w3.org/TR/html4/strict.dtd">

 Note: <!DOCTYPE html> for HTML5

– 2. a declarative header section
• Delimited with the <head> tag
• The <title>tag is used to give the document a title normally

displayed in the browser’s window title bar

– 3. a body containing the document's actual content
• Delimited with the <body> tag
• After document type declaration, the remainder of an HTML

document is contained by the html element

HTML Elements and Tags

• A tag is always enclosed in angle bracket
<>like <HTML>

• HTML tags normally come in pairs like
<HTML> and </HTML>

• i.e. Start tag = <HTML> & End tag =</HTML>

• Start and end tags are also called opening tags
and closing tags.

HOW TO START

• Write html code in notepad.

• Save the file with (.Html)/(.Htm) extension.

• View the page in any web browser viz.
INTERNET EXPLORER, NETSCAPE NAVIGATOR
etc.

• The purpose of a web browser (like internet
explorer or firefox) is to read html documents
and display them as web pages.

HTML syntax

1.The DOCTYPE

2.Elements

3.Attributes

4.Comments

DOCTYPE

< !DOCTYPE html> - Required Header

Elements

 <element> …………... </element>

 Start tag Content End tag

Attributes

 <element attribute=”value”>

 Name Value

Comments
 <!-- comment -->

 Start Comment End
• <HTML> - Describe HTML web page that is to be

viewed by a web browser.
• <HEAD> - This defines the header section of the

page.
• <TITLE> - This shows a caption in the title bar of

the page.
• <BODY> - This tag show contents of the web

page will be displayed.

Code With HTML

<HTML>
<HEAD>
<TITLE> MY FIRST PAGE </TITLE>
</HEAD>
<BODY>
GLOBAL INFORMATION CHANNEL
</BODY>
</HTML>

Types of HTML Tags

• There are two different types of tags:->

 Container Element:->

 Container Tags contains start tag & end tag
i.e. <HTML>… </HTML>

 Empty Element:->

 Empty Tags contains start tag

 i.e.
 - break

Text Formatting Tags

Heading Element:->

• There are six heading elements
(<H1>,<H2>,<H3>,<H4>, <H5>,<H6>).

• All the six heading elements are container tag
and requires a closing tag.

• <h1> will print the largest heading

• <h6> will print the smallest heading

Heading Tag Code
<html>
<head>
 <title>heading</title>
</head>
<body>
 <h1> GLOBAL INFO CHANNEL</h1>
 <h2> GLOBAL INFO CHANNEL</h2>
 <h3> GLOBAL INFO CHANNEL</h3>
 <h4> GLOBAL INFO CHANNEL</h4>
 <h5> GLOBAL INFO CHANNEL</h5>
 <h6> GLOBAL INFO CHANNEL</h6>
</body>
</html>

Result of Heading Code

HTML Paragraph Tag

• HTML documents are divided into paragraphs.

• Paragraphs are defined with the <p> tag

 i.e. <p>This is a paragraph</p>

 <p>This is another paragraph</p>

 <pre>This text is preformatted</pre>

Line Break & Horizontal
Line Tag

• If you want a line break or a new line without
starting a new paragraph Use the
 tag.

• Defines a horizontal line use <hr>tag.

•
 <hr> element are empty HTML element

 i.e. Global Information Channel <hr> Global
Information
 Channel

Text Formatting Tags

 Defines bold text
 <big> Defines big text
 Defines emphasized text
 <i> Defines italic text
 <small> Defines small text
 Defines strong text
 <sub> Defines subscripted text
 <sup> Defines superscripted text
 <ins> Defines inserted text
 Defines deleted text
 <tt> Defines teletype text
 <u> Defines underline text
 <strike> Defines strike text

Text Formatting Code
<html>
<head></head>
<body>
This text is Bold

This text is Emphasized

<i>This text is Italic</i>

<small>This text is Small</small>

This is_{Subscript} and
^{Superscript}

This text is Strong

<big>This text is Big</big>

<u>This text is Underline</u>

<strike>This text is Strike</strike>

<tt>This text is Teletype</tt>
</body>
</html>

Result of Text Formatting
Code

Font Tag

• This element is used to format the size,
typeface and color of the enclosed text.

• The commonly used fonts for web pages are
Arial, Comic Sans MS , Lucida Sans

• Unicode, Arial Black, Courier New, Times, New
Roman, Arial Narrow, Impact,Verdana.

• The size attribute in font tag takes values from
1 to 7.

Font Tag Code
<html>
<head><title> fonts</title></head>
<body>

 GLOBAL INFORMATION CHANNEL

 GLOBAL INFORMATION

CHANNEL

 GLOBAL INFORMATION

CHANNEL

 GLOBAL INFORMATION

CHANNEL

 GLOBAL INFORMATION

CHANNEL

 GLOBAL INFORMATION CHANNEL

 GLOBAL INFORMATION CHANNEL

</body>
</html>

Result of Font Code

Background & Text Color Tag

• The attribute bgcolor is used for changing the back
ground color of the page.

 <body bgcolor=“Green” >

• Text is use to change the color of the enclosed text.

 <body text=“White”>

Text Alignment Tag

• It is use to alignment of the text.

 –Left alignment <align=“left”>

 –Right alignment <align=“right”>

 –Center alignment <align=“center”>

Hyperlink Tag

• A hyperlink is a reference (an address) to a resource on
the web.

• Hyperlinks can point to any resource on the web: an
HTML page, an image, a sound file, a movie, etc.

• The HTML anchor element <a>, is used to define both
hyperlinks and anchors.

 Link text

• The href attribute defines the link address.

 Visit
globalinfochannel!

Result of Hyperlink Code

Image Tag

• To display an image on a page, you need to use
the src attribute.

• src stands for "source". The value of the src
attribute is the URL of the image you want to
display on your page.

• It is a empty tag.

 <IMG SRC="picture.gif“ HEIGHT="30“

WIDTH="50">

Image attributes - tag

 Defines an image
 <Src> display an image on a page,
 Src stands for "source"
 <Alt> Define "alternate text" for an image
 <Width> Defines the width of the image
 <Height> Defines the height of the image
 <Border> Defines border of the image
 <Hspace> Horizontal space of the image
 <Vspace> Vertical space of the image
 <Align> Align an image within the text
 <background>Add a background image to an HTML page

Code & Result of the Image
<html><body>
<p><img
src="file:///C:/WINDOWS/Zapotec.bmp"
align="left" width="48" height="48"> </p>
<p><img src
="file:///C:/WINDOWS/Zapotec.bmp"
align="right" width="48" height="48"></p>
</body></html>

<HTML>
<<body
background="file:///C:/WINDOWS/Soap
%20Bubbles.bmp" text="white">

<h2> Background Image!</h2>
</BODY></HTML>

Code & Result of the Image
<html><body>
<p>An image
<img src="file:///C:/WINDOWS/Zapotec.bmp"
align="bottom" width="48" height="48"> in the text</p>
<p>An image
<img src ="file:///C:/WINDOWS/Zapotec.bmp"
align="middle" width="48" height="48"> in the text</p>
<p>An image
<img src ="file:///C:/WINDOWS/Zapotec.bmp"
align="top" width="48" height="48"> in the text</p>
<p>Note that bottom alignment is the default
alignment</p>
<p><img src ="file:///C:/WINDOWS/Zapotec.bmp"
width="48" height="48">
An image before the text</p>
<p>An image after the text
<img src ="file:///C:/WINDOWS/Zapotec.bmp"
width="48" height="48"> </p>
</body></html>

 Code & Result of the Image
<html><body>
<p><img src="file:///C:/WINDOWS/Zapotec.bmp"
align="bottom" width="20" height="20"> </p>
<p><img src ="file:///C:/WINDOWS/Zapotec.bmp"
align="middle" width="40" height="40"></p>
<p><img src ="file:///C:/WINDOWS/Zapotec.bmp"
align="top" width="60" height="60"></p>
<p><img src ="file:///C:/WINDOWS/Zapotec.bmp"
width="80" height="80"> </p>
<p><img src ="file:///C:/WINDOWS/Zapotec.bmp"
width="100" height="100"> </p>
</body></html>

HTML Table Tag

 <table> used to create table
 <tr> table is divided into rows
 <td> each row is divided into data cells
 <th> Headings in a table
 <Caption> caption to the table
 <colgroup> Defines groups of table columns
 <col> Defines the attribute values for one or more columns in a table
 <thead> Defines a table head
 <tbody> Defines a table body
 <tfoot> Defines a table footer
 <Cellspacing> amount of space between table cells.
 <Cellpadding>space around the edges of each cell
 <Colspan> No of column working with will span
 <rowspan> No of rows working with will span attribute takes a number

<table> Tag

• The <table> tag defines an HTML table.

• An HTML table consists of the <table>
element

• <table> closing tag is </table>

• An HTML table has two kinds of cells:
o Header cells - contains header information

(created with the <th> element)

o Standard cells - contains data (created with the
<td> element)

<th> Tag

• The <th> tag defines a header cell in an HTML
table.

• Closing tag is </th>

• The text in <th> elements are bold and
centered by default.

<td> Tag

• The <td> tag defines a standard cell in an
HTML table.

• The text in <td> elements are regular and left-
aligned by default

• Closing tag is </td>

<tr> Tag

• The <tr> tag defines a row in an HTML table.

• A <tr> element contains one or more <th> or
<td> elements.

• Closing tag is </tr>

<table> input

<table>output

Code & Result of the Table

<html>
<body>
<h3>Table without border</h3>
<table>
 <tr> <td>MILK</td>
 <td>TEA</td>
 <td>COFFEE</td> </tr>
 <tr> <td>400</td>
 <td>500</td>
 <td>600</td> </tr>
</table>
</body>
</html>

<caption> Tag

• The <caption> tag defines a table caption.

• The <caption> tag must be inserted
immediately after the <table> tag.

• we can specify only one caption per table.

• By default, a table caption will be center
aligned above a table.

• Closing tag is </caption>

<caption> input

<caption> output

Table Code with Border &
Header

<html><body>

<h4>Horizontal Header:</h4>

<table border="1">

<tr> <th>Name</th> <th>Loan No</th>

<th>Amount</th> </tr>

<tr> <td>Jones</td> <td>L-1</td>

<td>5000</td></tr> </table>

<h4>Vertical Header:</h4>

<table border="5">

<tr> <th>Name</th> <td>Jones</td> </tr>

<tr> <th>Loan No</th>

<td>L-1</td> </tr>

<tr> <th>Amount</th> <td>5000</td></tr>

</table>

</body></html>

<thead> Tag
• The <thead> tag is used to group header content

in an HTML table.

• The <thead> element is used in conjunction with
the <tbody> and <tfoot> elements to specify each
part of a table (header, body, footer).

• The <thead> tag must be used in the following
context: As a child of a <table> element, after any
<caption>, and <colgroup> elements, and before
any <tbody>, <tfoot>, and <tr> elements.

• The <thead> element must have one or more
<tr> tags inside.

<tbody> Tag

• The <tbody> tag is used to group the body
content in an HTML table.

• The <tbody> element is used in conjunction with
the <thead> and <tfoot> elements to specify each
part of a table (body, header, footer).

• The <tbody> tag must be used in the following
context: As a child of a <table> element, after any
<caption>, <colgroup>, and <thead> elements.

• The <tbody> element must have one or more
<tr> tags inside.

<tfoot> Tag

• The <tfoot> tag is used to group footer content in
an HTML table.

• The <tfoot> element is used in conjunction with
the <thead> and <tbody> elements to specify
each part of a table (footer, header, body).

• The <tfoot> tag must be used in the following
context: As a child of a <table> element, after any
<caption>, <colgroup>, and <thead> elements
and before any <tbody> and <tr> elements.

• The <tfoot> element must have one or more <tr>
tags inside.

Input

output

<col> Tag

• The <col> tag specifies column properties for
each column within a <colgroup> element.

• The <col> tag is useful for applying styles to
entire columns, instead of repeating the styles
for each cell, for each row.

<colgroup> Tag

• The <colgroup> tag specifies a group of one or
more columns in a table for formatting.

• The <colgroup> tag is useful for applying styles to
entire columns, instead of repeating the styles for
each cell, for each row.

• The <colgroup> tag must be a child of a <table>
element, after any <caption> elements and
before any <thead>, <tbody>, <tfoot>, and <tr>
elements.

• To define different properties to a column within
a <colgroup>, use the <col> tag within the
<colgroup> tag.

input

output

Row span input

Rowspan output

Colspan input

Colspan output

Table Code with Colspan &
Rowspan

<html><body>
<h4>Cell that spans two columns:</h4>
<table border="4">
<tr> <th>Name</th>
<th colspan="2">Loan No</th> </tr>
<tr> <td>Jones</td> <td>L-1</td>
<td>L-2</td> </tr> </table>
<h4>Cell that spans two rows:</h4>
<table border="8">
<tr> <th>Name</th>
<td>Jones</td></tr>
<tr> <th rowspan="2">Loan No</th>
<td>L-1</td></tr>
<tr> <td>L-2</td></tr> </table>
</body></html>

Table Code with Caption &

ColSpacing
 <html>

 <body>
 <table border="1">
 <caption>My Caption</caption>
 <tr>
 <td>Milk</td>
 <td>Tea</td>
 </tr>
 <tr>
 <td></td>
 <td>Coffee</td>
 </tr>
 </table>
 </body>
 </html>

Cellpadding, Image &
Backcolor Code

<html><body>
<h3>Without cellpadding:</h3>
<table border="2" bgcolor="green">
<tr> <td>Jones</td>
<td>Smith</td></tr>
<tr> <td>Hayes</td>
<td>Jackson</td></tr></table>

<h4>With cellpadding:</h4>
<table border="8“ cellpadding="10"

background="file:///C:/WINDOWS/
FeatherTexture.bmp">

<tr> <td>Jones</td>
<td>Smith</td></tr>
<tr> <td>Hayes</td>
<td>Jackson</td></tr></table>
</body></html>

HTML List Tag

• Lists provide methods to show item or
element sequences in document content.

• There are three main types of lists:->

 – Unordered lists:-unordered lists are
bulleted

 – Ordered lists:- Ordered lists are numbered

 – Definition lists:- Used to create a
definition list

List Tags

 is an empty tag. it is used for
representing the list items

 Ordered list

 Unordered list

<DL> Defines a definition list

 <DT> Defines a term (an item) in a definition
list

 <DD> Defines a description of a term in a
definition list

Unordered List

• TYPE attribute to the tag to show
different bullets like:-

 –Disc

 –Circle

 –Square

 <ul Type =“disc”>…..

• The attribute TYPE can also be used with
element.

Code & Result of the
Unordered List

<html><body>
<h4>Disc bullets list:</h4>
<ul type="disc"> Jones
Smith
Hayes
Jackson
<h4>Circle bullets list:</h4>
<ul type="circle"> Jones
Simth
Hayes
Jackson
<h4>Square bullets list:</h4>
<ul type="square"> Jones
Smith
Hayes
Jackson
</body></html>

Ordered List

• The TYPE attribute has the following value
like:-

 –TYPE = "1" (Arabic numbers)

 –TYPE = "a" (Lowercase alphanumeric)

 –TYPE = "A" (Uppercase alphanumeric)

 –TYPE = "i" (Lowercase Roman numbers)

 –TYPE = "I" (Uppercase Roman numbers)

• By default Arabic numbers are used

Code & Result of the Ordered
List

<html><body>
<h4>Numbered list:</h4>
 Jones
Smith
Hayes
Jackson
<h4>Letters list:</h4>
<ol type="A"> Jones
Smith
Hayes
Jackson
<h4>Roman numbers list:</h4>
<ol type="I"> Jones
Smith
Hayes
Jackson
</body></html>

The start Attribute

• You can use start attribute for tag to specify
the starting point of numbering you need.
Following are the possible options −

• <ol type = "1" start = "4"> - Numerals starts with 4.
<ol type = "I" start = "4"> - Numerals starts with IV.
<ol type = "i" start = "4"> - Numerals starts with iv.
<ol type = "a" start = "4"> - Letters starts with d.
<ol type = "A" start = "4"> - Letters starts with D.

Example
Following is an example where we used <ol type = "i" start = "4" >

<!DOCTYPE html>
 <html>
 <head>
 <title>HTML Ordered List</title>
 </head>
 <body>
 <ol type = "i" start = "4">
 Beetroot
 Ginger
 Potato
 Radish

 </body>
</html>

DEFINTION LIST
• Used for definitions. Like google define (ex: define:

php).

• Starts with <dl> tag. Each term starts with <dt> tag.

• Description of term starts with <dd> tag.

HTML FRAMES

• Frame is a container window that can display

a web page; Many web pages can display;
Break the page into different sections

 – Title

 – Navigational

 – Contents

 – Footer

FRAME Tags

• <frameset>

• Define the style and no. of frames

• Nested <frameset> also allowed

Tags contd…

• <frame>

• Nested in frameset tag

Tags contd….

• Target Frame

Creating Frames - <frameset>
Element

• The <frameset> tag replaces the <body> element in
frameset documents.

• The <frameset> tag defines how to divide the window
into frames.

• Each frameset defines a set of rows or columns. If you
define frames by using rows then horizontal frames are
created. If you define frames by using columns then
vertical frames are created.

• The values of the rows/columns indicate the amount of
screen area each row/column will occupy.

• Each frame is indicated by <frame> tag and it defines
what HTML document to put into the frame.

The <frameset> Element Attributes

The <frameset> Element Attributes

Loading Content - <frame> Element

• The <frame> element indicates what goes in
each frame of the frameset.

• The <frame> element is always an empty
element, and therefore should not have any
content, although each <frame> element
should always carry one attribute, src, to
indicate the page that should represent that
frame.

The <frame> Element Attributes

The <frame> Element Attributes

Browser Support - <noframes>
Element

• If a user is using any old browser or any browser which
does not support frames then <noframes> element
should be displayed to the user.

• In XHTML you must place a <body> element inside the
<noframes> element because the <frameset> element
is supposed to replace the <body> element, but if a
browser does not understand the <frameset> element
it should understand what is inside the <body>
element contained in the <noframes> element.

• You can put some nice message for your user having
old browsers. For example Sorry!! your browser does
not support frames.

Example-1

Example-2

Output

HTML Form

• A form is an area that can contain form elements.
• Form elements are elements that allow the user to enter

information in a form like text fields, text area fields, drop-
down menus, radio buttons and checkboxes etc

• A form is defined with the <form> tag.
• The syntax:-
 <form>
 .
 input elements
 .
 </form>

Form Tags

<form> defines a form for user input
<input>used to create an input field
<text>Creates a single line text entry field
<textarea>Defines a text-area (a multi-line text input control)
<password>Creates a single line text entry field. And the characters

entered are shown as asterisks (*)
<label>Defines a label to a control
<option>Creates a Radio Button.
<select>Defines a selectable list (a drop-down box)
<button>Defines a push button
<value>attribute of the option element.
<checkbox>select or unselect a checkbox
<dropdown box>A drop-down box is a selectable list

Code of the HTML Form
<html><body><form>

<h1>Create a Internet Mail Account</h1>

<p>First Name <input type="text" name="T1" size="30"></p>

<p>Last Name <input type="text" name="T2" size="30"></p>

<p>Desired Login Name <input type="text" name="T3" size="20"> @mail.com</p>

<p>Password <input type="password" name="T4" size="20"></p>

<input type="radio" checked="checked" name="sex" value="male" /> Male</br>

<input type="radio" name="sex" value="female" /> Female

<p>Birthday <input type="text" name="T6" size="05">

<select size="1" name="D2">

<option>-Select One-</option>

<option>January</option>

<option>February</option>

<option>March</option> </select>

<input type="text" name="T7" size="10"></p>

TypeYourself<textarea rows="4" name="S1" cols="20"></textarea>

<input type="submit" value="Accept" name="B1"> <input

type="reset“ value="Cancel" name="B2"></br> </form></body></html>

Result of the Form Code

CSS-What is CSS?

• CSS stands for Cascading Style
Sheet. Styles define how to
display HTML elements
– Typical CSS file is a text file with

an extention.css and contains a
series of commands or rules.

– These rules tell the HTML how
to display.

* To create a style sheet, create a file
using Notepad (PC) or Text Edit (Mac),
save it as a .css document and start
writing the CSS code (see right).

Style.css

/* Styles for sitename.com*/
body {
font-family:Arial;
background: #000;
}
#container {
text-align:left;
width:1020px;
}
#header {
height:232px;
}
#footer {
width: 100%;
padding: 0 10px;
margin-bottom: 10px;
}
And so on….

CSS Versions

 CSS has various levels and profiles. Each level of CSS builds upon the
last, typically adding new features and typically denoted as CSS1,
CSS2, and CSS3.

• The first CSS specification to become an official W3C

Recommendation is CSS level 1, published in December 1996.
• CSS level 2 was developed by the W3C and published as a

Recommendation in May 1998. A superset of CSS1, CSS2 includes a
number of new capabilities like absolute, relative, and fixed
positioning of elements and z-index, the concept of media types
etc.

• CSS 3
 CSS lev el 3 is currently under development. The W3C maintains a

CSS3 progress report.

Why to Learn CSS?
• Cascading Style Sheets, fondly referred to as CSS, is a simple design

language intended to simplify the process of making web pages
presentable.

• CSS is a MUST for students and working professionals to become a great

Software Engineer specially when they are working in Web Development
Domain. I will list down some of the key advantages of learning CSS:
– Create Stunning Web site - CSS handles the look and feel part of a web page.

Using CSS, you can control the color of the text, the style of fonts, the spacing
between paragraphs, how columns are sized and laid out, what background
images or colors are used, layout designs, variations in display for different
devices and screen sizes as well as a variety of other effects.

– Become a web designer - If you want to start a carrer as a professional web
designer, HTML and CSS designing is a must skill.

– Control web - CSS is easy to learn and understand but it provides powerful
control over the presentation of an HTML document. Most commonly, CSS is
combined with the markup languages HTML or XHTML.

– Learn other languages - Once you understands the basic of HTML and CSS
then other related technologies like javascript, php, or angular are become
easier to understand.

Applications of CSS
• CSS saves time - You can write CSS once and then reuse same sheet in

multiple HTML pages. You can define a style for each HTML element and
apply it to as many Web pages as you want.

• Pages load faster - If you are using CSS, you do not need to write HTML tag
attributes every time. Just write one CSS rule of a tag and apply it to all the
occurrences of that tag. So less code means faster download times.

• Easy maintenance - To make a global change, simply change the style, and
all elements in all the web pages will be updated automatically.

• Superior styles to HTML - CSS has a much wider array of attributes than
HTML, so you can give a far better look to your HTML page in comparison
to HTML attributes.

• Multiple Device Compatibility - Style sheets allow content to be optimized
for more than one type of device. By using the same HTML document,
different versions of a website can be presented for handheld devices such
as PDAs and cell phones or for printing.

• Global web standards - Now HTML attributes are being deprecated and it
is being recommended to use CSS. So its a good idea to start using CSS in
all the HTML pages to make them compatible to future browsers.

HTML Without CSS
• “HTML without CSS is like a

piece of candy without a
pretty wrapper.”

• Without CSS, HTML
elements typically flow
from top to bottom of the
page and position
themselves to the left by
default.

• With CSS help, we can
create containers or DIVs to
better organize content and
make a Web page visually
appealing.

HTML & CSS

• HTML and CSS work together to produce
beautiful and functional Web sites

• HTML = structure

• CSS = style

Hello World using CSS.

<!DOCTYPE html>
<html>
 <head>
 <title>This is document title</title>
 <style>
 h1 {
 color: #36CFFF;
 }
 </style>
 </head>
 <body>
 <h1>Hello World!</h1>
 </body>
</html>

Features of CSS

CSS - Syntax
• A CSS comprises of style rules that are

interpreted by the browser and then applied to
the corresponding elements in your document. A
style rule is made of three parts −
– Selector − A selector is an HTML tag at which a style

will be applied. This could be any tag like <h1> or
<table> etc.

– Property − A property is a type of attribute of HTML
tag. Put simply, all the HTML attributes are converted
into CSS properties. They could be color, border etc.

– Value − Values are assigned to properties. For
example, color property can have value
either red or #F1F1F1 etc.

Understanding Style Rules

• A Style Rule is composed of two parts: a
selector string and a declaration block.

• CSS Style Rule Syntax as follow:

 selector { property: value;}

• The Selector indicates the element to which
the rule is applied.

• The Declaration determines the property
values of a selector.

CSS declarations always ends with a semicolon, and declaration groups are
surrounded by curly brackets:
 p {color:red;text-align:center;}
To make the CSS more readable, you can put one declaration on each line, like
this:
 Example
 p{
 color:red;
 text-align:center;
 }

CSS Comments
A CSS comment begins with "/*", and ends with "*/", like this:
 /*This is a comment*/
 p{
 text-align:center;
 /*This is another comment*/
 color:black;
 font-family:arial;
 }

CSS - Measurement Units
Unit Description Example

% Defines a measurement as a percentage relative to another value,
typically an enclosing element.

p {font-size: 16pt; line-height:
125%;}

cm Defines a measurement in centimeters. div {margin-bottom: 2cm;}

em A relative measurement for the height of a font in em spaces. Because an
em unit is equivalent to the size of a given font, if you assign a font to
12pt, each "em" unit would be 12pt; thus, 2em would be 24pt. p {letter-spacing: 7em;}

ex This value defines a measurement relative to a font's x-height. The x-
height is determined by the height of the font's lowercase letter x.

p {font-size: 24pt; line-height:
3ex;}

in Defines a measurement in inches. p {word-spacing: .15in;}

mm Defines a measurement in millimeters. p {word-spacing: 15mm;}

pc Defines a measurement in picas. A pica is equivalent to 12 points; thus,
there are 6 picas per inch. p {font-size: 20pc;}

pt Defines a measurement in points. A point is defined as 1/72nd of an inch. body {font-size: 18pt;}

px Defines a measurement in screen pixels. p {padding: 25px;}

CSS Selectors

• There are 5 varieties of CSS Selectors
available for us. We will be looking at the
following important CSS Selectors:

1. CSS Universal Selector.

2. CSS Element Selector.

3. CSS Id Selector.

4. CSS Class Selector.

5. CSS Attribute Selector.

Simple Selector

• Simple selector form
is a single element to
which the property
and value is applied.

Universal Selector
In an HTML page, the content depends on HTML tags. A pair of
tags defines a specific webpage element. The CSS universal
selector selects all the elements on a webpage.

* {
color: blue;
font-size: 21px;
}

These two lines of code surrounded by the curly braces will affect
all the elements present on the HTML page. We declare a
universal selector with the help of an asterisk at the beginning of
the curly brace. Universal Selector can be used along with the
other selectors in combination.

CSS Element Selector

 CSS Element Selector is also known as a Type selector. Element Selector in CSS
tries to match one or more HTML elements having the same name. Therefore, a
selector of matches all the elements i.e. all the unordered lists in that
HTML page. ul

{ list-style: none;
border: solid 1px #ccc;
}

Fish
Apples
Cheese

<div class="example">
<p>Example paragraph
text.</p>
</div>

Water
Juice
Maple Syrup

There are three main elements making up this part

of the page:

Two elements and a <div>.

The CSS will apply only to the two elements,

 and not to the <div>.

Were we to change the element type selector to

use <div> instead of , then the styles would

apply to the <div> and not to the

two elements.

Also note that the styles will not apply to the
elements inside the or <div> elements.

ID Selector
 An ID selector is declared using a hash, or pound symbol (#) preceding a

string of characters. The string of characters is defined by the developer.
This selector matches any HTML element that has an ID attribute with the
same value as that of the selector, but minus the hash symbol.

#container {
width: 960px;
margin: 0 auto;
}

This CSS uses an ID selector to match an HTML
element such as:

 <div id="container"></div>

In this case, the fact that this is a <div> element doesn’t matter— it could be

any kind of HTML element. As long as it has an ID attribute with a value
of container, the styles will apply. An ID element on a web page should be

unique. That is, there should only be a single element on any given page with

an ID of container. This makes the ID selector quite inflexible, because the

styles used in the ID selector rule set can be used only once per page. If there

happens to be more than one element on the page with the same ID, the styles

will still apply, but the HTML on such a page would be invalid from a technical

standpoint, so you’ll want to avoid doing this.

CSS Class Selector
 The CSS Class selector is one of the most helpful

selectors of all the selectors. It is declared by using a
dot followed by the name of the class. This class name
is defined by the coder, as is the case with the ID
selector. The class selector searches for every element
having an attribute value with the same name as the
class name, without the dot.

.square {
margin: 20px;
width: 20px;
}

This CSS code can be used to match the element having the class ‘square,

like in the following sentence.
 <div class="square"></div>

This style also applies to all the other HTML elements having an attribute value for the class

as ‘square’.

An element having the same class attribute value helps us in reusing the styles and avoids

unnecessary repetition.

Additionally, the Class Selector is beneficial because it permits us to add several classes to a

particular element.

We can add more than one class to the attribute by separating each class with space.

Example:
<div class=”square bold shape”></div>

Here square, bold and shape are three different types of classes.

CSS Attribute Selector
The CSS Attribute selector styles content
according to the attribute and the attribute
value mentioned in the square brackets.
No spaces can be present ahead of the
opening square bracket.

input[type="text"] {
background-color:
#fff;
width: 100px;
}

This CSS code would be a match for the following HTML element.
 <input type="text">

Similarly, if the value of the attribute ‘type’ changes, the Attribute selector

would not match it.

For example, the selector would not match the attribute if the value of

‘type’ changed from ‘text’ to ‘submit’.

If the attribute selector is declared with only the attribute, and no attribute

value, then it will match to all the

HTML elements with the attribute ‘type’, regardless of whether the value is

‘text’ or ‘submit’.

Example:
input[type] {

background-color: #fff;

width: 100px;

}

We can also make use of attribute selectors with no specification of a

value outside the square brackets.

This will help us to target the attribute only, regardless of the element. In

our example, it will target based on the attribute ‘type’, regardless of the

element ‘input’.

CSS Selectors help us to simplify our code and enable us to utilize and

reuse the same CSS code for various HTML elements.

They help us in styling specific segments and portions of our webpage.

They provide us with the option of uniformly styling similar elements in our

web page.

CSS selectors are thus, an important part of the learning curve of CSS.

The advantage to this method is that the <input type = "submit"
/> element is unaffected, and the color applied only to the
desired text fields.

There are following rules applied to attribute selector.
p[lang] − Selects all paragraph elements with a lang attribute.
p[lang="fr"] − Selects all paragraph elements
whose lang attribute has a value of exactly "fr".
p[lang~="fr"] − Selects all paragraph elements
whose lang attribute contains the word "fr".
p[lang|="en"] − Selects all paragraph elements
whose lang attribute contains values that are exactly "en", or
begin with "en-".

Multiple Style Rules
 • You may need to define multiple style rules for a single

element. You can define these rules to combine multiple
properties and corresponding values into a single block as
defined in the following example −
 H1 {
 color: #36C;
 font-weight: normal; letter-spacing: .4em;
 margin-bottom: 1em;
 text-transform: lowercase;
 }

• Here all the property and value pairs are separated by
a semicolon (;). You can keep them in a single line or multiple
lines. For better readability, we keep them in separate lines.

Pseudo-class
• Using Pseudo classes we can give special effects

on the selectors. Most commonly used pseudo-
classes are
– Focus->select links that are the current focus of the

keyboard

– Hover ->When the mouse cursor rolls over a link, that
link is in it's hover state and this will select it.

– hyperlink

– Active->Selects the link while it is being activated

– Visited->Selects links that have already been visited by
the current browser.

 a:hover { color: red; }

Grouping Selectors

 • You can apply a style to many selectors if
you like. Just separate the selectors with
a comma, as given in the following
example −

 h1, h2, h3 {
 color: #36C;
 font-weight: normal;
 letter-spacing: .4em;
 margin-bottom: 1em;
 text-transform: lowercase;
 }

• This define style rule will be applicable to

h1, h2 and h3 element as well. The order
of the list is irrelevant. All the elements
in the selector will have the
corresponding declarations applied to
them.

You can combine the
various id selectors together as
shown below −

Different types of Stylesheets

 The information contents of any web
document can be represented with the help of
cascading style sheets. We can define the
stylesheets in 3 ways:
– Internal - Placed right on the page whose

interface it will affect.

– External - Placed in a separate file.

– Inline - Placed inside a tag it will affect.

Inline Stylesheet

• Use inline stylesheets when you want to apply a
style to a single occurence of an element.

• Inline stylesheets are declared within individual
tags and affect those tags only (defined inside
HTML element).

• An inline stylesheet has the highest priority.
• Inline stylesheets are declared with

the style attribute in the corresponding tag.
• In-line CSS style consists set of rules in 4 part:

1. Selector (Element)
2. Style (Attribute)
3. Property and
4. Value

How to write In-line CSS Style

• Selector is normally HTML element that element
you want to assign CSS style. And style is attribute
to assign CSS property and set suitable value.

Example

Internal Stylesheet

• Internal CSS Style includes within web page
using <style type="text/css">.....</style> element
and between this element CSS style properties
are listed. Internal CSS style normally written
within <head>.....</head> element of the web
page.

• An internal stylesheet has the second highest
priority.

• Internal CSS style consists set of rules in 3 part:
1. Selector (element, class, id)

2. Property and

3. Value

How to write Internal CSS Style
• Selector is normally HTML element that element you want

to assign CSS style. All elements within web page that
elements assign CSS properties and set suitable values.

Example

External Stylesheet

Use an external stylesheet when you want to apply one style
to many pages. If you make one change in an external stylesheet,
the change is universal on all the pages where the stylesheet is
used.
An external stylesheet is declared in an external file with a .css
extension. It is called by pages whose interface it will affect.
External stylesheets are called using the <link> tag which should
be placed in the head section of an HTML document. This tag
takes three attributes.
An external stylesheet has the third highest priority.
External style sheet consists set of rules in 4 part:
 1. External Source link
 2. Selector (element, class, id)
 3. Property and
 4. Value

How to write External Stylesheet
• External stylesheet linked to a web page.

Selector is normally HTML element (or class, id)
to assign CSS properties and set suitable values.

<link> Tag

• <link> tells browser some file must be linked to
the page.

• When we want to link the external style sheet
then we have to use <link> tag which is to be
written in the head section.

• Attributes of the <link> tag:
– rel = stylesheet tells the browser that this linked thing

is a stylesheet.

– type = "text/css“ tells browser that what it is reading
is text which is affected by the CSS.

– href = “ ” denotes the name and location (pathname)
of the external stylesheet to be used.

Example

NOTE: The <style> tag is NOT used in an external stylesheet, and neither are HTML
comments.

@import Style Sheet

• @import CSS Style is another way to loading a CSS file.

• @import CSS Style define within

 <style type="text/css">.....</style>

element in your

 <head>.....</head> of your web page.

• @import CSS style consists set of rules in 3 part:

1.@import (keyword)

2.url()

3.CSS file path

@import url('style.css');

How to write @import CSS Style

Example

CSS Text Properties

Using this properties you can change the text formatting
style. Following are some CSS text properties listed:

– CSS Color

– CSS text-direction

– CSS text-align

– CSS text-indent

– CSS text-decoration

– CSS text-transformation

– CSS letter-spacing

– CSS word-spacing

– CSS white-space

– CSS text-shadow

CSS Color
• CSS color property use to set the Text color. The color

value can be specified following three types:
1. Color Name: Orange
2. Color Hexadecimal Code: #FFA500
3. Color RGB: rgb(255, 165, 0)
Example

CSS Text-Direction

• CSS Text-Direction property is used to set the
text direction. Possible values are ltr or rtl.

CSS Text-Align
CSS text-align property use to set the horizontal alignment of text. Text-align
possible value center, left, right, or justify. When you set text-align property
value justify than the effect is both width (left or right) equal like newspaper or
books type.

<!DOCTYPE html>
<html>
 <head>
 <title>CSS Text Align</title>
 </head>
 <body>
 <p style="text-align: right;">CSS text align right</p>
 <p style="text-align: center;">CSS text align center</p>
 <p style="text-align: left;">CSS text align left</p>
 <p style="text-align: justify;">Hello, this is example of CSS text-align justify type. Both
 side left and right are equal. Its like newspaper or book type. Hello, this is example of
 CSS text-align justify type. Both side left and right are equal. Its like newspaper or
 book type. Hello, this is example of CSS text-align justify type. Both side left and right are
 equal. Its like newspaper or book type.</p>
 </body>
 </html>

CSS Text-Indent
CSS text-indent property is used to set the paragraph first line
left side leave the blank space. Possible values are % or a number
specifying indent space.

CSS Text-Decoration
CSS text-decoration property use to decorate the text. Possible
values are none, underline, overline, blink, line-through etc.

CSS Text-Transformation
CSS text-transformation property use to text transform. CSS text-transformation
possible value none, capitalize, lowercase and uppercase in a text.
CSS text-transformation property value capitalize, it means first letter capital for
all word.

<!DOCTYPE html>
<html>
<head>
<title>CSS text-transform</title>
</head>
<body>
<p style="text-transform: capitalize">This text transform to capital.</p>
<p style="text-transform: lowercase">This text transform to lowercase.</p>
<p style="text-transform: uppercase">This text transform to uppercase.</p>
</body>
</html>

CSS Letter-Spacing
CSS letter-spacing property set blank space between each
letters. Possible values are normal or a number specifying space..

<!DOCTYPE html>
<html>
<head>
<title>CSS letter-spacing</title>
</head>
<body>
<p style="letter-spacing: 5px;">This text is having space between letters.</p>
</body>
</html>

CSS Word-Spacing
CSS word-spacing property set blank space between each words.
Possible values are normal or a number specifying space.

<!DOCTYPE html> <html>
<head>
<title>CSS word-spacing</title>
</head>
<body>
<p style="word-spacing: 25px;">This text is having space between words.</p>
</body>
</html>

CSS White-Space
CSS white-space property use to set a predefine task. CSS white-
space possible value is 'normal', 'pre‘, ‘nowrap’.

<!DOCTYPE html>
<html>
<head>
<title>CSS white-space</title>
</head>
<body>
<p style="white-space: pre;">
 This text has a line break and the white-space pre setting
 tells the browser to honor it just like the HTML pre tag.
</p>
</body>

</html>

CSS Text-Shadow
CSS text-shadow property is use to decorate text and apply shadow
effect style. This may not be supported by all the browsers.

<!DOCTYPE html>
<html>
<head>
<title>CSS text-shadow</title>
</head>
<body>
<p style="text-shadow: 4px 4px 8px orange;">
 This text is represent text shadow effect.</p>
</body>
</html>

CSS Font Properties

Using CSS font properties you can change the font
formatting style. Here are some CSS font properties listed.

–Font-Families

–Font-Style

–Font-Variant

–Font-Weight

–Font-Size

–Font-Shorthands

CSS Font-Family
CSS font-family property to define font face name with one or
more font. Single Quote (' ') is first priority to apply first. If that
font not available then left to right optional apply (eg. Courier).

<!DOCTYPE html>
<html>
<head>
<title>CSS Font Family</title>
</head>
<body>
<p style="font-family: 'Courier New', Courier, monospace;">
 This text is represent font family property.</p>
</body>
</html>

Text Property-Font-Families
• The font-family property specifies the font for an element.
• There are two types of font family names:

1. family-name - The name of a font-family, like "times",
"courier", "arial", etc.

2. generic-family - The name of a generic-family, like "serif",
"sans-serif", "cursive", "fantasy", "monospace".

• Syntax
 font-family: family-name|generic-family|initial|inherit;

Value Description

family-name
generic-family

A prioritized list of font family names and/or generic family
names

initial Sets this property to its default value.

inherit Inherits this property from its parent element.

CSS Font-Style
CSS font-style property use to set font style like normal, italic,
oblique.

<!DOCTYPE html>
<html>
<head>
<title>CSS Font Style</title>
</head>
<body>
<p style="font-style: normal;">This text is normal style</p>
<p style="font-style: italic;">This text is italic style</p>
<p style="font-style: oblique;">This text is oblique style</p>
</body>
</html>

CSS Font-Variant
CSS font-variant property set word first capital letter can be
display in variant style. Possible values are normal and small-
caps.

<!DOCTYPE html>
<html>
<head>
<title>CSS Font Variant</title>
</head>
<body>
<p style="font-variant: small-caps">This text is represent font variant.</p>
</body>
</html>

CSS Font-Weight
CSS font-weight property use to set font weight like bold, bolder,
lighter. The font-weight property provides the functionality to
specify how bold a font is. Possible values could be normal, bold,
bolder, lighter, 100, 200, 300, 400, 500, 600, 700, 800, 900.

<!DOCTYPE html>
<html>
<head>
<title>CSS Font Weight</title>
</head>
<body>
<p style="font-weight: normal;">This text font weight normal.</p>
<p style="font-weight: bold;">This text font weight bold.</p>
<p style="font-weight: lighter;">This text font weight lighter.</p>
<p style="font-weight: 500;">This text font is 500 weight.</p>
</body>
</html>

CSS Font-Size
CSS font-size property set the font size. Possible values could be xx-
small, x-small, small, medium, large, x-large, xx-large, smaller,
larger, size in pixels or in %.
<!DOCTYPE html>
<html>
<head>
<title>CSS Font Size</title>
</head>
<body>
<p style="font-size: 18px;">This font size is 18 pixel.</p>
<p style="font-size: small;">This font size is small.</p>
<p style="font-size: x-large;">This font size is x-large.</p>
<p style="font-size: smaller;">This font size is smaller.</p>
</body>
</html>

CSS Font-Size Adjust
CSS Font-Size Adjust property set the font size adjust of an element. This
property enables you to adjust the x-height to make fonts more legible. Possible
value could be any number.

 <p style="font-size-adjust:0.61;">This text is using font style</p>

CSS Font-Stretch
CSS Font-Stretch property set the font stretch of an element. This property
relies on the user's computer to have an expanded or condensed version of the
font being used. Possible values could be normal, wider, narrower, ultra-
condensed, extra-condensed, condensed, semi-condensed, semi-expanded,
expanded, extra-expanded, ultra-expanded.

<p style="font-stretch:ultra-expanded;">This text is using font style</p>

CSS Font-Shorthands
CSS Font-Shorthands property set more than one (or) all the font
properties at once.

<html>
<head>
</head>
<body>
 <p style="font : italic small-caps bold 15px georgia;">
 Applying all the properties on the text at once.
 </p>
</body>
</html>

CSS Images
1. Image Border Property:

 The border property of an image is used to set the width of an
image border. This property can have a value in length or in %.
A width of zero pixels means no border.

<body>

</body>

2. Image Height Property :

 The height property of an image is used to set the height of an
image. This property can have a value in length or in %.

3. Image Width Property:

 The width property of an image is used to set the width of an
image. This property can have a value in length or in %.

4. -moz-opacity Property:
 The -moz-opacity property of an image is used to set the opacity

of an image. This property is used to create a transparent image
in Mozilla. IE uses filter:alpha(opacity=x) to create transparent
images.

• In Mozilla (-moz-opacity:x) x can be a value from 0.0 - 1.0. A
lower value makes the element more transparent (The same
things goes for the CSS3-valid syntax opacity:x).

• In IE (filter:alpha(opacity=x)) x can be a value from 0 - 100. A
lower value makes the element more transparent.

<img style = "border:1px solid red; -moz-opacity:0.4; filter:alpha(opacity=40);" src =
"/css/images/logo.png" />

CSS Background Properties

• CSS Background properties like background-color,
background-image, background-position,
background-repeat, background-attachment
properties and many more.

CSS background-color=set background color.

 <p style="background-color: orange;">This text background color orange.</p>

CSS background-image
 <p style="background-image:url(../../images/img_nat.png); color:#FFFFFF;

height:130px; width:200px; font-size:20px;">This text element set background
image.</p>

CSS background-repeat

 CSS background-repeat property repeat image both side horizontally or vertically.
CSS background-repeat property possible value is repeat, no-repeat, repeat-x
(vertically repeat), and repeat-y (horizontally repeat).

 <p style="background-image:url(../../images/img_nat.png); height:120px; background-
repeat: no-repeat;“>This element represent background-repeat property.</p>

CSS background-attachment
 <p style="background-image: url(../../images/img_nat.png); height: 130px; width: 200px;

overflow: scroll; background-attachment:fixed; color: white;“>This element represent
background-attachment property. It means image does not moved only fixed attached a
image. background attachment possible value fixed or scroll. you can use this value and
display results.This example is Background attachment image is fixed means image does
not moved only fixed attached a image. background attachment possible value fixed or
scroll. you can use this value and display results.</p>

CSS background-position

 CSS background-position property use to set background image in different type
position like left, right, center, top, bottom.

 <p style="background-image:url(../../images/img_nat.png); height:120px; background-
repeat: no-repeat; background-position: 150px;">This element represent background-
position property. </p>

CSS - Links
CSS Links set different properties of a hyper link using CSS. You can set
following properties of a hyper link −

– The :link signifies unvisited hyperlinks.

– The :visited signifies visited hyperlinks.

– The :hover signifies an element that currently has the user's mouse
pointer hovering over it.

– The :active signifies an element on which the user is currently clicking.

• Here some rules apply when you set the style for hyperlink.

– a:hover always come after a:link or a:visited

– a:active always come after a:hover

<style type = "text/css">

 a:link {color: #000000}

 a:visited {color: #006600}

 a:hover {color: #FFCC00}

 a:active {color: #FF00CC} </style>

Set the Color of Links

 <html> <head>

 <style type = "text/css">

 a:link {color:#000000}

 a:visited {color: #006600} </style>

 </head>

<body>

Link

</body> </html>

CSS Links Background Color
 <head>

<style type="text/css"> a:link {background-color:#CCCCCC;} </style>

</head>

CSS Links Text Decoration
<head>

<style type="text/css"> a:link { text-decoration: none; }

a:hover { text-decoration: underline; } </style>

</head>

CSS Lists
• Lists are very helpful in conveying a set of either

numbered or bullet points. We have the following five
CSS properties, which can be used to control lists −
– The list-style-type allows you to control the shape or

appearance of the marker.

– The list-style-position specifies whether a long point that
wraps to a second line should align with the first line or
start underneath the start of the marker.

– The list-style-image specifies an image for the marker
rather than a bullet point or number.

– The list-style serves as shorthand for the preceding
properties.

– The marker-offset specifies the distance between a
marker and the text in the list.

CSS list-style-type

• CSS list-style-type property use for display list item either Ordered
or Unordered list.

• Ordered list possible value roman, alpha, numeric and manymore.
Unordered list possible value circle, square, disk and none.

• List Style Type possible values see the list-style-type:

Value Description

disk disk type list item display, this is default value

circle Circle type list item display

square Square type list item display.

none Nothing any style apply in list item

Unordered list value

Value Description

decimal decimal type numeric list style (eg. 1, 2, 3 and so on.)
this is default value.

upper-alpha Uppercase alphabetically list style (eg. A, B, C ans so on.)

lower-alpha Lowercase alphabetically list style (eg. a, b, c and so on.)

upper-roman Uppercase roman numerals list (eg. I, II, III and so on.)

lower-roman Lowercase roman numerals list (eg. i, ii, iii and so on.)

Ordered list value

<body>
<ul style="list-style-type: square;">
 Item one
 Item two

<ul style="list-style-type: lower-roman;">
 Item one
 Item two
 </body>

CSS list-style-image property set list style URL specified image.

<body>
<ul style="list-style-image: url(../../images/new.png);">
Item one
Item two

CSS list-style-position

CSS list-style-image

CSS list-style-position set list style position either inside or outside.

<ul style="list-style-position: outside; list-style-type: lower-roman;">
Item one
Item two

<ul style="list-style-position: inside; list-style-type: lower-alpha;">
Item one
Item two

The marker-offset Property

The marker-offset property allows you to specify the distance between the
marker and the text relating to that marker. Its value should be a length as
shown in the following example −

<body>
 <ul style = "list-style: inside square; marker-offset:2em;">
 Maths
 Social Science
 Physics

 <ol style = "list-style: outside upper-alpha; marker-offset:2cm;">
 Maths
 Social Science
 Physics

</body>

CSS Layout Style
CSS Layout Box Model-CSS layout box model give you layout knowledge of element
content and how to set padding, margin or border. CSS layout allow you to set border
around padding and set margin around content to better manage.

Margin
Margin are border outside area. So margin is not support any
special CSS properties exclude margin group properties It is use
to leave a blank space around element content.
Border
Border are define the border around element content. It is use
to display border outside content(like text, images and so
forth).
Padding
Padding define the content or border in this two part middle
part are call padding. It is use to leave blank space between
content or border.
Width or Height of Elements
You can specify width or hight either absolute or relative value.
Total width count by this way,
Total width = width + left padding + right padding + left border
+ right border + left margin + right margin
Total Height count by this way,
Total Height = height + top padding + bottom padding + top
border + bottom border + top margin + bottom margin

CSS Border
CSS Border properties give you control to set border style.

 Border Border Properties

border-top border-top-color
border-top-style
border-top-width

border-bottom border-bottom-color
border-bottom-style
border-bottom-width

border-left border-left-color
border-left-style
border-left-width

border-right border-right-color
border-right-style
border-right-width

<!DOCTYPE html>
<html>
<head>
<title>CSS border property</title>
</head>
<body>
<p style="border-style: solid; border-width:1px; border-color: orange;">
 This paragraph represent the CSS border properties. This way you can
 change the border color, border width or border style.</p>
</body>
</html>

CSS border shorthand property

<body>
<p style="border-top:2px dashed orange;">
 This element set CSS top border style dashed.</p>
</body>

CSS border-style property

<!DOCTYPE html> <html>
<head>
<title>CSS border property</title>
</head>
<body>
<p style="border: 2px solid orange;">This element border style solid.</p>
<p style="border: 2px dotted orange;">This element border style dotted.</p>
<p style="border: 2px dashed orange;">This element border style dashed.</p>
<p style="border: 2px double orange;">This element border style double.</p>
<p style="border: 2px groove orange;">This element border style groove.</p>
<p style="border: 2px ridge orange;">This element border style ridge.</p>
<p style="border: 2px inset orange;">This element border style inset.</p>
<p style="border: 2px outset orange;">This element border style outset.</p>
<p style="border: 2px hidden orange;">This element border style hidden.</p>
</body> </html>

CSS border-radius Property
The CSS border-radius property defines the radius of an element's corners.

1. Rounded corners for an element with a specified background color:
2. Rounded corners for an element with a border:
3. Rounded corners for an element with a background image:

<!DOCTYPE html> <html> <head>
<style>
#rcorners1 { border-radius: 25px; background: #73AD21; padding: 20px; width: 200px;
height: 150px; }
#rcorners2 { border-radius: 25px; border: 2px solid #73AD21; padding: 20px; width:
200px; height: 150px; }
#rcorners3 { border-radius: 25px; background: url(paper.gif); background-position: left
top; background-repeat: repeat; padding: 20px; width: 200px; height: 150px; }
</style> </head>
<body> <h1>The border-radius Property</h1>
<p>Rounded corners for an element with a specified background color:</p>
<p id="rcorners1">Rounded corners!</p>
<p>Rounded corners for an element with a border:</p>
<p id="rcorners2">Rounded corners!</p>
<p>Rounded corners for an element with a background image:</p>
<p id="rcorners3">Rounded corners!</p>
</body> </html>

<!DOCTYPE html> <html> <head>
<style>
#rcorners1 { border-radius: 15px 50px 30px 5px; background: #73AD21; padding: 20px;
 width: 200px; height: 150px; }
#rcorners2 { border-radius: 15px 50px 30px; background: #73AD21; padding: 20px;
 width: 200px; height: 150px; }
#rcorners3 { border-radius: 15px 50px; background: #73AD21; padding: 20px; width: 200px;
 height: 150px; }
#rcorners4 { border-radius: 15px; background: #73AD21; padding: 20px; width: 200px;
 height: 150px; }
</style> </head>
<body>
<h1>The border-radius Property</h1>
<p>Four values - border-radius: 15px 50px 30px 5px:</p>
<p id="rcorners1"></p>
<p>Three values - border-radius: 15px 50px 30px:</p>
<p id="rcorners2"></p>
<p>Two values - border-radius: 15px 50px:</p>
<p id="rcorners3"></p>
<p>One value - border-radius: 15px:</p>
<p id="rcorners4"></p>
</body>
</html>

CSS box-shadow Property

The box-shadow property attaches one or more shadows to an element.

CSS Syntax
box-shadow: none|h-offset v-offset blur spread color |inset|initial|inherit;

Value Description

none Default value. No shadow is displayed

h-offset Required. The horizontal offset of the shadow. A positive value puts the shadow on the
right side of the box, a negative value puts the shadow on the left side of the box

v-offset Required. The vertical offset of the shadow. A positive value puts the shadow below the
box, a negative value puts the shadow above the box

blur Optional. The blur radius. The higher the number, the more blurred the shadow will be

spread Optional. The spread radius. A positive value increases the size of the shadow, a
negative value decreases the size of the shadow

color Optional. The color of the shadow. The default value is the text color.

inset Optional. Changes the shadow from an outer shadow (outset) to an inner shadow

initial Sets this property to its default value.

inherit Inherits this property from its parent element.

Property Values

Example-1
Add a blur effect to the shadow:

<!DOCTYPE html> <html> <head>
<style>
#example1 { border: 1px solid; padding: 10px; box-shadow: 5px 10px 8px #888888; }
#example2 { border: 1px solid; padding: 10px; box-shadow: 5px 10px 18px #888888; }
#example3 { border: 1px solid; padding: 10px; box-shadow: 5px 10px 18px red; }
</style> </head>
<body>
<h2>box-shadow: 5px 10px 8px #888888:</h2>
<div id="example1">
 <p>The optional third value adds a blur effect to the shadow.</p>
</div>
<h2>box-shadow: 5px 10px 18px #888888:</h2>
<div id="example2">
 <p>More blurred.</p>
</div>
<h2>box-shadow: 5px 10px 18px red:</h2>
<div id="example3">
 <p>More blurred and red.</p>
</div>
</body> </html>

Example-2
Define the spread radius of the shadow:

<!DOCTYPE html>
<html>
<head>
<style>
#example1 {
 border: 1px solid;
 padding: 10px;
 box-shadow: 5px 10px 8px 10px #888888;
}
</style>
</head>
<body>

<h2>box-shadow: 5px 10px 8px 10px #888888:</h2>
<div id="example1">
 <p>The optional fourth value defines the spread of the shadow.</p>
</div>

</body>
</html>

Example-3
Define multiple shadows:

<!DOCTYPE html> <html> <head> <style>
#example1 {
 border: 1px solid; padding: 10px;
 box-shadow: 5px 5px blue, 10px 10px red, 15px 15px green; }
#example2 {
 border: 1px solid; padding: 10px;
 box-shadow: 5px 5px 8px blue, 10px 10px 8px red, 15px 15px 8px green;
}
</style> </head>
<body>
<h2>box-shadow: 5px 5px blue, 10px 10px red, 15px 15px green:</h2>
<div id="example1">
 <p>Define multiple shadows.</p>
</div>
<h2>box-shadow: 5px 5px 8px blue, 10px 10px 8px red, 15px 15px 8px green:</h2>
<div id="example2">
 <p>Define multiple shadows with blur effect.</p>
</div>
</body></html>

Example-4
Add the inset keyword:

<!DOCTYPE html>
<html>
<head>
<style>
#example1 { border: 1px solid; padding: 10px; box-shadow: 5px 10px inset; }
#example2 { border: 1px solid; padding: 10px; box-shadow: 5px 10px 20px red inset;}
</style>
</head>
<body>
<h2>box-shadow: 5px 10px inset:</h2>
<div id="example1">
 <p>The inset keyword changes the shadow to one inside the frame.</p>
</div>
<h2>box-shadow: 5px 10px 20px red inset:</h2>
<div id="example2">
 <p>Inset, red and blur.</p>
</div>
</body>
</html>

Example-4
Images thrown on the table. This example demonstrates how to create "polaroid" pictures and rotate the pictures:

<!DOCTYPE html> <html> <head>
<style>
body { margin: 30px; background-color: #E9E9E9;}
div.polaroid { width: 284px; padding: 10px 10px 20px 10px; border: 1px solid #BFBFBF;
 background-color: white; box-shadow: 10px 10px 5px #aaaaaa;
}
div.rotate_right { float: left;
-ms-transform: rotate(7deg); /* IE 9 */
-webkit-transform: rotate(7deg); /* Safari */
transform: rotate(7deg);
}
div.rotate_left { float: left;
-ms-transform: rotate(-8deg); /* IE 9 */
-webkit-transform: rotate(-8deg); /* Safari */
transform: rotate(-8deg);
}
</style></head>
<body>
<div class="polaroid rotate_right">

 <p class="caption">The pulpit rock in Lysefjorden, Norway.</p>
</div>
<div class="polaroid rotate_left">

 <p class="caption">Monterosso al Mare. One of the five villages in Cinque Terre, Italy.</p>
</div>
</body></html>

CSS border-image Property
The CSS border-image property allows you to specify an image to be used instead of
the normal border around an element.
 The property has three parts:

1.The image to use as the border
2.Where to slice the image
3.Define whether the middle sections should be repeated or stretched

<!DOCTYPE html><html><head>
<style>
#borderimg1 { border: 10px solid transparent; padding: 15px; border-image: url(border.png) 50
round;}
#borderimg2 { border: 10px solid transparent; padding: 15px; border-image: url(border.png) 20%
round;}
#borderimg3 { border: 10px solid transparent; padding: 15px; border-image: url(border.png) 30%
round;}
</style> </head>
 <body>
<h1>The border-image Property</h1>
<p id="borderimg1">border-image: url(border.png) 50 round;</p>
<p id="borderimg2">border-image: url(border.png) 20% round;</p>
<p id="borderimg3">border-image: url(border.png) 30% round;</p>
<p>Note: Internet Explorer 10, and earlier versions, do not support the border-
image property.</p> </body>
</html>

CSS Margin
CSS Margin property leave blank space around the content elements
(outside of border). CSS Margin property support pixel, percentage or
auto measurement value.

Properties Value Description

margin px
%
auto

User define pixel value.
User define percentage value.
Set automatic.

margin-left px
%
auto

margin left side set define pixel value.
margin left side set User define percentage value.
margin left side Set automatic.

margin-right px
%
auto

margin right side set User define pixel value.
margin right side set User define percentage value.
margin right side set Set automatic.

margin-top px
%
auto

margin top set user define pixel value.
margin top set user define percentage value.
margin top set automatic.

margin-bottom px
%
auto

margin bottom set user define pixel value.
margin bottom set user define percentage value.
margin bottom set automatic.

<!DOCTYPE html>
<html>
 <head>
 <title>CSS margin property</title>
 <style type="text/css">
 p.first { border: 1px solid orange; margin-left: 30px; }
 p.second { border: 1px solid orange; margin-left: 20%; }
 p.third { border: 1px solid orange; margin-left: auto; }
 </style>
 </head>
 <body>
 <p class="first">This element set margin-left, border width, border color, border
 style CSS properties.</p>
 <p class="second">This element set margin-left, border width, border color, border
 style CSS properties.</p>
 <p class="third">This element set margin-left, border width, border color, border
 style CSS properties.</p>
 </body>
</html>

CSS Margin shorthand property

CSS margin property write in shorthand way including following margin
properties:
 1. margin-top
 2. margin-right
 3. margin-bottom
 4. margin-left

Value Description

margin: 12px; all 4 side margin 12 pixel.

margin: 10px 20px; top and bottom margin 10 pixel
right side and left side margin 20 pixel.

margin: 10px 20px 30px; top margin 10 pixel
left side and right side margin 20 pixel
bottom margin is 30 pixel.

margin: 10px 20px 30px 40px; top margin is 10 pixel
right side margin is 20 pixel
bottom margin is 30 pixel
left side margin is 40 pixel.

 Margin value how to set

<!DOCTYPE html>
 <html>
 <head>
 <title>CSS margin property</title>
 <style type="text/css">
 p {
 border: 1px solid orange; margin: 25px 25px 5px 50px; width: 150px;
 }
 </style>
 </head>
 <body>
 <p class="first">
 This element set shorthand margin style property.
 </p>
 </body>
 </html>

CSS Padding
CSS Padding property leave blank space around the element content
(inside of border). CSS Padding property support pixel, percentage
or auto value.

Properties Value Description

padding px
%
auto

User define pixel value.
User define percentage value.
Set automatic.

padding-left px
%
auto

padding left side set define pixel value.
padding left side set User define percentage value.
padding left side Set automatic.

padding-right px
%
auto

padding right side set User define pixel value.
padding right side set User define percentage value.
padding right side set Set automatic.

padding-top px
%
auto

padding top set user define pixel value.
padding top set user define percentage value.
padding top set automatic.

padding-bottom px
%
auto

padding bottom set user define pixel value.
padding bottom set user define percentage value.
padding bottom set automatic.

<!DOCTYPE html>
 <html>
 <head>
 <title>CSS padding property</title>
 <style type="text/css">
 p.first { border: 1px solid orange; padding-left: 30px; }
 p.second { border: 1px solid orange; padding-left: 20%; }
 p.third { border: 1px solid orange; padding-left: auto; }
 </style>
 </head>
 <body>
 <p class="first">This element set padding-left, border width, border
 color, border style CSS properties.</p>
 <p class="second">This element set padding-left, border width, border
 color, border style CSS properties.</p>
 <p class="third">This element set padding-left, border width, border
 color, border style CSS properties.</p>
 </body>
 </html>

CSS Padding shorthand property

CSS padding property write in shorthand way including following padding properties:
 1. padding-top
 2. padding-right
 3. padding-bottom
 4. padding-left

Value Description

padding: 12px; all 4 side padding 12 pixel.

padding: 10px 20px; top and bottom padding 10 pixel
right side and left side padding 20 pixel.

padding: 10px 20px 30px; top padding 10 pixel
left side and right side padding 20 pixel
bottom padding is 30 pixel.

padding: 10px 20px 30px 40px; top padding is 10 pixel
right side padding is 20 pixel
bottom padding is 30 pixel
left side padding is 40 pixel.

 Margin value how to set

<!DOCTYPE html>
 <html>
 <head>
 <title>CSS padding property</title>
 <style type="text/css">
 p {
 border: 1px solid orange; padding: 25px 25px 50px
50px; width: 150px; }
 </style>
 </head>
 <body>
 <p class="first">This element set shorthand padding style
 property.</p>
 </body>
 </html>

CSS Display

 CSS display property use for how to display list
of item. Possible value is inline, block, inline-
block and so on.

Syntax Value Description

display inline
block
inline-block
none

value specify how to list display inline, block,
inline-block and none of display.

CSS display Property

CSS display:inline style
 CSS display inline means elements displayed inline in current block of line.

Example
 <!DOCTYPE html>
 <html>
 <head>
 <title>CSS display property</title>
 <style type="text/css">
 li { display: inline; }
 </style>
 </head>
 <body>
 <p>This example set inline elements</p>

 Menu.1 |
 Menu.2 |
 Menu.3 |
 Menu.4

 </body>
 </html>

CSS display:block style
CSS display block means elements displayed as a block. Header and Paragraphs

are always in block style.
Example
 <!DOCTYPE html>
 <html>
 <head>
 <title>CSS display property</title>
 <style type="text/css">
 li { display: block; }
 </style>
 </head>
 <body>
 <p>First block paragraph</p>

 This is block Menu.1
 This is block Menu.2

 <p>Another block paragraph</p>

 This is block Menu.1
 This is block Menu.2

 </body>
 </html>

CSS display:inline-block style
 CSS display inline-block means elements is display as a inline but it's behaves is

like block type.
Example
 <!DOCTYPE html>
 <html>
 <head>
 <title>CSS display property</title>
 <style type="text/css">
 li { display:inline-block; }
 </style>
 </head>
 <body>
 <p>First block paragraph</p>

 This is block menu.1
 This is block menu.2

 <p>Another block paragraph</p>

 This is block menu.1
 This is block menu.2

 </body>
 </html>

CSS display:none style
CSS display type none means element is not display, element is no longer display.
Example
 <!DOCTYPE html>
 <html>
 <head>
 <title>CSS display property</title>
 <style type="text/css">
 li { display:none; }
 </style>
 </head>
 <body>
 <p>First block paragraph</p>

 This is block menu.1
 This is block menu.2

 <p>Another block paragraph</p>

 This is block menu.1
 This is block menu.2

 </body>
 </html>

CSS Position
CSS position property set an element positioning to display in web page. CSS
position property possible value relative, absolute and fixed.

CSS position:relative property
 CSS position:relative property set element relatively followed by the relative offset

from top, right, bottom or left. Relative position is related to each and every around

element properties (like margin, background-color and so forth).
Example
<!DOCTYPE html>
 <html>
 <head>
 <title>CSS position property</title>
 </head>
 <body>
 <div style="position: relative; left: 120px; background-color: orange;
 width: 120px;"> This element is a relative positioning for each
 elements.
 </div>
 </body>
 </html>

CSS position:absolute property
CSS position:absolute property set element absolutely followed by the absolute

offset from top, right, bottom or left. Relative positioning element inside you can set

absolute position element.

Example

<!DOCTYPE html>
 <html>
 <head>
 <title>CSS position property</title>
 </head>
 <body>
 <div style="position: relative; width: 400px; height: 150px;
 border: 1px solid orange;">
 <div style="position: absolute; top: 35px; left: 220px; width:
 160px; background-color: orange;">This element is a absolute
 positioning for each elements.
 </div>
 </div>
 </body>
 </html>

CSS position:fixed property
CSS position:fixed property set element in fixed, even if window scroll vertically or

horizontally element is fixed place. CSS position fixed followed by the window offset top,

right, bottom, left.
Example
 <!DOCTYPE html>
 <html>
 <head>
 <title>CSS position property</title>
 </head>
 <body>
 <div style="width:400px; height:150px; border: 1px solid orange; overflow:
 scroll;">
 <div style="position: fixed; top: 35px; left: 220px; width: 100px; background-
 color: orange;">Fixed element</div>
 CSS background-repeat property repeat image both side horizontally
 or vertically. CSS background-repeat property possible value is
 repeat, no-repeat, repeat-x (vertically repeat), and repeat-y
 (horizontally repeat).

 CSS background-repeat property repeat image both side horizontally
 or vertically.CSS background-repeat property possible value is
 repeat, no-repeat, repeat-x (vertically repeat), and repeat-y
 (horizontally repeat).

 CSS background-repeat property repeat image both side horizontally
 or vertically. CSS background-repeat property possible value is
 repeat, no-repeat, repeat-x (vertically repeat), and repeat-y
 (horizontally repeat). </div>
 </body>
 </html>

CSS - Cursors
The cursor property of CSS allows you to specify the type of cursor that should
be displayed to the user.

Sr.No. Value & Description

1 auto
Shape of the cursor depends on the context area it is over. For example an I over text, a hand over a link,
and so on...

2 crosshair
A crosshair or plus sign

3 default
An arrow

4 pointer
A pointing hand (in IE 4 this value is hand)

5 move
The I bar

6 e-resize
The cursor indicates that an edge of a box is to be moved right (east)

7 ne-resize
The cursor indicates that an edge of a box is to be moved up and right (north/east)

8 nw-resize
The cursor indicates that an edge of a box is to be moved up and left (north/west)

9 n-resize
The cursor indicates that an edge of a box is to be moved up (north)

10 se-resize
The cursor indicates that an edge of a box is to be moved down and right (south/east)

11 sw-resize
The cursor indicates that an edge of a box is to be moved down and left (south/west)

12 s-resize
The cursor indicates that an edge of a box is to be moved down (south)

13 w-resize
The cursor indicates that an edge of a box is to be moved left (west)

14 text
The I bar

15 wait
An hour glass

16 help
A question mark or balloon, ideal for use over help buttons

17 <url>
The source of a cursor image file

Sr.No. Value & Description

<html>
 <head>
 </head>
 <body>
 <p>Move the mouse over the words to see the cursor change:</p>
 <div style="cursor:auto">Auto</div>
 <div style="cursor:crosshair">Crosshair</div>
 <div style="cursor:default">Default</div>
 <div style="cursor:pointer">Pointer</div>
 <div style="cursor:move">Move</div>
 <div style="cursor:e-resize">e-resize</div>
 <div style="cursor:ne-resize">ne-resize</div>
 <div style="cursor:nw-resize">nw-resize</div>
 <div style="cursor:n-resize">n-resize</div>
 <div style="cursor:se-resize">se-resize</div>
 <div style="cursor:sw-resize">sw-resize</div>
 <div style="cursor:s-resize">s-resize</div>
 <div style="cursor:w-resize">w-resize</div>
 <div style="cursor:text">text</div>
 <div style="cursor:wait">wait</div>
 <div style="cursor:help">help</div>
 </body>
</html>

 and <div> Tags
 Tag:
 It is used to group elements for styling purposes so that some text which are

grouped will appear differently in a paragraph. That means we can
differentiate particular text using font-size, color, font-family, font-style and so
on.

<!DOCTYPE html> <html>
<head>
<title> Span Demo </title>
<style type = "text/css">
.myspan
{ font-size:28px; font-family:Arial;
 color:green; background-color:yellow;
}
</style>
</head>
<body>
<h3>Twinkle Twinklelittlestars</h3>
</body>
</html>

<div> Tag:

Div tag is similar to span tag where div is a block-level tag but span is an inline tag.
The div tag is known as Division tag. The div tag is used to make divisions of
content in the web page like (text, images, header, footer, navigation bar, etc). The
Div is the most usable tag in web development because it helps us to separate out
data in the web page and we can create a particular section for particular data or
function in the web pages.

<!DOCTYPE html> <html> <head>
<title> Div Demo </title>
<style type = "text/css">
.mysection
{ font-size:28px;
font-family:'monotype corsiva';
 background-color:yellow;}
</style> </head>
<body>
 <div class="mysection">
<p> Div tag is Block level tag. It is a generic container tag</p>
<p>It is used to the group of various tags of HTML .</p>
</body>
</html>

References

• https://way2tutorial.com/html/tutorial.php

• https://coursesweb.net/html

• https://www.geeksforgeeks.org/html-tutorials/

• https://www.tutorialride.com/html/html-
tutorial.htm

• https://www.w3schools.com/html/

• https://www.tutorialspoint.com/html/index.htm

• https://tutorialehtml.com/en/html-tutorial-
complete-html-guide/

https://way2tutorial.com/html/tutorial.php
https://coursesweb.net/html
https://www.geeksforgeeks.org/html-tutorials/
https://www.geeksforgeeks.org/html-tutorials/
https://www.geeksforgeeks.org/html-tutorials/
https://www.tutorialride.com/html/html-tutorial.htm
https://www.tutorialride.com/html/html-tutorial.htm
https://www.tutorialride.com/html/html-tutorial.htm
https://www.w3schools.com/html/
https://www.tutorialspoint.com/html/index.htm
https://tutorialehtml.com/en/html-tutorial-complete-html-guide/
https://tutorialehtml.com/en/html-tutorial-complete-html-guide/
https://tutorialehtml.com/en/html-tutorial-complete-html-guide/
https://tutorialehtml.com/en/html-tutorial-complete-html-guide/
https://tutorialehtml.com/en/html-tutorial-complete-html-guide/
https://tutorialehtml.com/en/html-tutorial-complete-html-guide/
https://tutorialehtml.com/en/html-tutorial-complete-html-guide/
https://tutorialehtml.com/en/html-tutorial-complete-html-guide/
https://tutorialehtml.com/en/html-tutorial-complete-html-guide/

Contents

Introduction to SGML – features of XML - XML as a
subset of SGML – XML Vs HTML – Views of an XML
document - Syntax of XML- XML Document
Structure – Namespaces- XML Schemas- simple
XML documents – Different forms of markup that
can occur in XML documents - Document Type
declarations – Creating XML DTDs – Displaying XML
Data in HTML browser – Converting XML to HTML
with XSL minimalist XSL style sheets – XML
applications

SGML(ISO 8879)

• Standard Generalized Markup Language is a meta-
markup language which means it allows us to create
our own language or our own tags.

• The international standard for defining descriptions of
structure and content in text documents.

• Interchangeable: device-independent, system-
independent, tags are not predefined.

• Using DTD to validate the structure of the document

• Large, powerful, and very complex

• Heavily used in industrial and commercial usages for
over a decade

XML Versions

• 1986 – SGML approved as International
Standard Organisation (ISO) Standard.

• 1990 – SGML used as basis for development
of HTML.

• 1998 – XML 1.0_First version of XML
published in February.

What is XML?
• XML stands for eXtensible Markup Language that

defines a set of rules for encoding documents in
a format that is both human-
readable and machine-readable.

• XML is a markup language much like HTML
• XML was designed to store and transport data
• XML was designed to be self-descriptive
• XML is designed to carry data, not to display data.
• XML tags are not predefined. You must define

your own tags.
• XML is platform independent and language

independent.

Features of XML - 1
• Allows XML validation

– A XML document can be validated using DTD or XML schema. This
ensures that the XML document is syntactically correct and avoids any
issues that may arise due to the incorrect XML.

• XML focuses on data rather than how it looks

– XML is popular because it focuses on data rather than data
presentation. his separates the data and its presentation part and
gives us the freedom to present the data the way we want.

• Easy and efficient data sharing

– Since XML is software and hardware independent, it is easier to share
data between different systems with different hardware and software
configuration. Any system with any programming language can read
and process a XML document.

• Compatibility with other markup language HTML

– It is so much easier to read the data from XML and display it on an
GUI(graphical user interface) using HTML markup language.

Features of XML - 2

• Supports platform transition

– XML simplifies the data is transportation on new upgraded systems
without any data loss.

• Adapts technology advancements

– it can adapt to the new technologies because of its platform-
independent nature.

• XML supports Unicode

– XML supports Unicode that allows it to communicate almost any
information in any written human language.

• XML can be used to create new internet languages

– A lot of new Internet languages are created with XML

HTML vs XML
No. HTML XML

1) HTML is used to display data and focuses
on how data looks.

XML is a software and hardware
independent tool used to transport and
store data. It focuses on what data is.

2) HTML is a markup language itself. XML provides a framework to define
markup languages.

3) HTML is not case sensitive. XML is case sensitive.

4) HTML is a presentation language. XML is neither a presentation language
nor a programming language.

5) HTML has its own predefined tags. You can define tags according to your
need.

6) In HTML, it is not necessary to use a
closing tag.

XML makes it mandatory to use a
closing tag.

7) HTML is static because it is used to display
data.

XML is dynamic because it is used to
transport data.

8) HTML does not preserve whitespaces. XML preserve whitespaces.

XML Components
The most basic components of an XML document are :

– Elements

– Control Information

– Entities

Elements:

• Elements are used to mark up the sections of an XML document. Elements
are the basic units used to identify and describe the data in XML. They are
the building blocks of an XML document. Elements are represented using
tags. An XML element has the following form:

 <ElementName>Content</ElementName>

• The content is contained within the XML tags. Content refers to the
information represented by the elements of an XML document.

• Empty Elements:Although XML tags usually enclose content, you can also have
elements that have no content, called empty elements. In XML, an empty element can
be represented as follows:

 <ElementName/>

• Nested Elements:Elements can be nested. For example, if you wanted to group all the
patient information under a single Patient element, you might want to rewrite the
patient record example as follows:

 <Patient>

 <PatientName>John Smith</PatientName>

 <PatientAge>108</PatientAge>

 <PatientWeight>155</PatientWeight>

 </Patient>

• Thus XML elements can contain other elements. However, the elements must be
strictly nested: each start tag must have a corresponding end tag.

• Attributes: Attributes provide additional information about the elements for which
they are declared. An attribute consists of a name-value pair. Consider the following

example:
 <Student_name S_ID = “101”>shanshak </ Student_name >

Control Information:
This gives control to the XML document.

• Comments: Comments are statements used to explain the XML code. They are

used to provide documentation information about the XML file or the
application to which the file belongs. The parser ignores comments entries
during code execution.

 <!--Comment here-->

• Processing Instructions: An XML Documents usually begins with the XML
declaration statement called the Processing Instructions .This statement
provides information on how the XML file should be processed.
 e.g. <?xml version =”1.0” encoding=”UTF-8”?>
The Processing Instruction statement uses the encoding property to specify
the encoding scheme used to create the XML file

• DTD:DTD stands for Document Type Definition. It defines the legal building
blocks of an XML document. It is used to define document structure with a list
of legal elements and attributes. Each XML has associated DTD held in a
separate file so that it can be used with many document. DTD file holds the
rules of grammar for a particular XML datastructure. Rules are used by
validating parsers to check.
 <!DOCTYPE employee SYSTEM "employee.dtd">

• CDATA: (Unparsed Character data): CDATA contains the
text which is not parsed further in an XML document.
Tags inside the CDATA text are not treated as markup and
entities will not be expanded.

<?xml version="1.0"?>
<!DOCTYPE employee SYSTEM "employee.dtd">
<employee>
<![CDATA[
 <firstname>vimal</firstname>
 <lastname>jaiswal</lastname>
 <email>vimal@javatpoint.com</email>
]]>
</employee>

• PCDATA: (Parsed Character Data): XML parsers are used to parse all the text in an XML
document. PCDATA stands for Parsed Character data. PCDATA is the text that will be parsed by a
parser. Tags inside the PCDATA will be treated as markup and entities will be expanded.

 employee.xml

<?xml version="1.0"?>

<!DOCTYPE employee SYSTEM "employee.dtd">

<employee>

 <firstname>vimal</firstname>

 <lastname>jaiswal</lastname>

 <email>vimal@javatpoint.com</email>

</employee>

 employee.dtd

 <!ELEMENT employee (firstname,lastname,email)>

 <!ELEMENT firstname (#PCDATA)>

 <!ELEMENT lastname (#PCDATA)>

 <!ELEMENT email (#PCDATA)>

Entities:
An entity is a name that is associated with a block of data, such as chunk of text or a reference to
an external file that contains textual or binary information. It is a set of information that can be
specifying a single name.

XML Document Structure
XML document is a tree structure which contain exactly one root element
which is the start tag of the XML document and it contains all other elements.
All elements in an XML document can contain sub elements, text and
attributes. The tree represented by an XML document starts at the root
element and branches to the lowest level of elements.

<root>

 <section>

 <sub-section></sub-section>

 <sub-section></sub-section>

 </section>

 <section>

 <sub-section></sub-section>

 <sub-section></sub-section>

 </section>

<root>

XML Declaration

• XML documents must begin with a prolog that
appears before the root element. It has the
metadata about the XML document such as
character encoding, document structure an
stylesheets.

 <?xml version=”1.0” encoding=”UTF-8”?>

XML Syntax Rules -1
• All XML documents must have a root element.

– A root element is simply a set of tags that contains your XML content.
<root>

 <author>Ernest Hemingway</author>

 <author>John Steinbeck</author>

 <author>James Joyce</author>

</root>

• All XML elements must have a closing tag.

– When a tag is declared (opened), it must also be closed. Any unclosed
tags will break the code. Even tags that don’t need to be closed in
HTML must be closed in XML or XHTML. To open a tag, type the name
of the element between less-than (<) and greater-than (>) characters,
like this opening tag:<author>.To close a tag, repeat the opening tag
exactly, but insert a slash in front of the tag name, like this closing
tag:</author>.Even empty tags, such as <hr> and
, must be
closed.

<p>This is another paragraph</p>

XML Syntax Rules -2
• Tag names have strict limits.

– Tag names can’t start with the letters xml, a number, or punctuation,
except for the underscore character (_).

– The letters XML are used in various commands and can’t start your tag
name. Numbers and punctuation also aren’t allowed in the beginning of
the tag name.

 <author> or <_author>

• XML tags are case sensitive.

– Uppercase and lowercase matter in XML. Opening and closing tags must
match exactly. For example, <ROOT>, <Root>, and <root> are three
different tags.

 <author>Hemingway</author> or

 <AUTHOR>Hemingway</AUTHOR>

• Tag Names cannot contain spaces

– Spaces in tag names can cause all sorts of problems with data-intensive
applications, so they’re prohibited in XML.

•

XML Syntax Rules -3

• Attribute values must always be quoted.

– Attribute values modify a tag or help identify the type of information
being tagged. If you’re a web designer, you may be used to the
flexibility of HTML, in which some attributes don’t require quotes. In
XML, all attribute values must appear within quotes. For example

 <chapter number="1">

 <artist title="author" nationality="USA">

• White Space is preserved

– XML does not truncate multiple white-spaces (HTML truncates
multiple white-spaces to one single white-space)

XML Namespace
• Sometimes we need to create two different elements by the same name.

The XML document allows us to create different elements which are
having the common name. This technique is known as namespace.
XML Namespace is used to avoid element name conflict in XML
document.

XML Namespace Declaration:

• An XML namespace is declared using the reserved XML attribute. This
attribute name must be started with "xmlns".

 <element xmlns:name = "URL">

• Here, namespace starts with keyword "xmlns". The word name is a
namespace prefix. The URL is a namespace identifier.

• To avoid these types of confliction we use XML Namespaces. We can say
that XML Namespaces provide a method to avoid element name conflict.

• Generally these conflict occurs when we try to mix XML documents from
different XML application.

Let's take an example with two tables:

Table1:

 <table>

 <tr>

 <td>Aries</td>

 <td>Bingo</td>

 </tr>

 </table>

Table2: This table carries information about a computer table.

 <table>

 <name>Computer table</name>

 <width>80</width>

 <length>120</length>

 </table>

If you add these both XML fragments together, there would be a name
conflict because both have <table> element. Although they have different
name and meaning.

How to get rid of name conflict?
1) By Using a Prefix

 You can easily avoid the XML namespace by using a name prefix.

<h:table>

 <h:tr>

 <h:td>Aries</h:td>

 <h:td>Bingo</h:td>

 </h:tr>

</h:table>

<f:table>

 <f:name>Computer table</f:name>

 <f:width>80</f:width>

 <f:length>120</f:length>

</f:table>

 In this example, you will get no conflict because both the tables have
specific names.

2) By Using xmlns Attribute

 You can use xmlns attribute to define namespace with the following syntax:

 <element xmlns:name = "URL">

 Let's see the example:
 <root>

 <h:table xmlns:h="http://www.abc.com/TR/html4/">

 <h:tr>

 <h:td>Aries</h:td>

 <h:td>Bingo</h:td>

 </h:tr>

 </h:table>

 <f:table xmlns:f="http://www.xyz.com/furniture">

 <f:name>Computer table</f:name>

 <f:width>80</f:width>

 <f:length>120</f:length>

 </f:table>

 </root>

In the above example, the <table> element defines a namespace and when a
namespace is defined for an element, the child elements with the same
prefixes are associated with the same namespace.

<root xmlns:h="http://www.abc.com/TR/html4/"

xmlns:f="http://www.xyz.com/furniture">

<h:table>

 <h:tr>

 <h:td>Aries</h:td>

 <h:td>Bingo</h:td>

 </h:tr>

</h:table>

<f:table>

 <f:name>Computer table</f:name>

 <f:width>80</f:width>

 <f:length>120</f:length>

</f:table>

</root>

The Namespace URI used in the above example is not necessary at all. It is not used by parser
to look up information. It is only used to provide a unique name to the Namespace identifier.

 Uniform Resource Identifier (URI):

 Uniform Resource Identifier is used to identify the internet resource. It is a string of
characters.

 The most common URI is URL (Uniform Resource Locator) which identifies an internet
domain address.

 There is also an URI name URN (Universal Resource Name) but it is not so common.

The Default Namespace:
• The default namespace is used in the XML document to save you

from using prefixes in all the child elements. The only difference
between default namespace and a simple namespace is that: There
is no need to use a prefix in default namespace. You can also use
multiple namespaces within the same document just define a
namespace against a child node.

 Example of Default Namespace:
<tutorials xmlns="http://www.javatpoint.com/java-tutorial">
 <tutorial>
 <title>Java-tutorial</title>
 <author>Sonoo Jaiswal</author>
 </tutorial>
 ...
</tutorials>

• You can see that prefix is not used in this example, so it is a default
namespace. If you define a namespace without a prefix, all
descendant elements are considered to belong to that namespace.

DTD
• A DTD is a Document Type Definition.
• A DTD defines the structure and the legal elements and

attributes of an XML document. DTDs check the validity of
structure and vocabulary of an XML document against the
grammatical rules of the appropriate XML language.

• With a DTD, independent groups of people can agree on a
standard DTD for interchanging data.

• An application can use a DTD to verify that XML data is
valid.

Types of DTD:
 DTD can be classified on its declaration basis in the XML

document, such as −
– Internal DTD
– External DTD

An Internal DTD Declaration:

• If the DTD is declared inside the XML file, it must be wrapped inside the <!DOCTYPE> definition:

 <?xml version="1.0"?>
 <!DOCTYPE note [
 <!ELEMENT note (to,from,heading,body)>
 <!ELEMENT to (#PCDATA)>
 <!ELEMENT from (#PCDATA)>
 <!ELEMENT heading (#PCDATA)>
 <!ELEMENT body (#PCDATA)>
]>
 <note>
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend</body>
 </note>

• The DTD above is interpreted like this:

– !DOCTYPE note defines that the root element of this document is note

– !ELEMENT note defines that the note element must contain four elements:
"to,from,heading,body"

– !ELEMENT to defines the to element to be of type "#PCDATA"

– !ELEMENT from defines the from element to be of type "#PCDATA"

– !ELEMENT heading defines the heading element to be of type "#PCDATA"

– !ELEMENT body defines the body element to be of type "#PCDATA"

An External DTD Declaration:
• If the DTD is declared in an external file, the

<!DOCTYPE> definition must contain a reference to the
DTD file:

 <?xml version="1.0"?>
 <!DOCTYPE note SYSTEM "note.dtd">
 <note>
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend!</body>
 </note>

• And here is the file "note.dtd", which contains the DTD:
 <!ELEMENT note (to,from,heading,body)>

 <!ELEMENT to (#PCDATA)>
 <!ELEMENT from (#PCDATA)>
 <!ELEMENT heading (#PCDATA)>
 <!ELEMENT body (#PCDATA)>

Merits of DTD:

1.DTDs are used to define the structural components of XML document.

2. These are relatively simple and compact.

3. DTDs can be defined inline and hence can be embedded directly in the XML

document.

4. Documentation − You can define your own format for the XML files. Looking at this

document a user/developer can understand the structure of the data.

5.Validation − It gives a way to check the validity of XML files by checking whether the

elements appear in the right order, mandatory elements and attributes are in place, the

elements and attributes have not been inserted in an incorrect way, and so on.

Demerits of DTD:

1.The DTDs are very basic and hence cannot be much specific for complex document.

2.The language that DTD uses is not an XML document. Hence various frameworks used

by XML cannot be supported by the DTDs.

3.The DTD cannot define the type of data contained within the XML document. Hence

we cannot specify whether the element is numeric or string data type.

4.There are some XML processor which do not understand DTDs.

5.The DTDs are not aware of namespace concept. It does not support the namespaces

XML Schemas
• XML Schema is commonly known as XML

Schema Definition (XSD) which is a language ffor
XML Schema.

• It is used to describe and validate the structure
and the content of XML data.

• XML schema defines the elements, attributes and
data types.

• Schema element supports Namespaces.
• It is similar to a database schema that describes

the data in a database.
• It also allows the developer to use data types.
• This can be used as an alternative to XML DTD.

DTD vs XSD
No. DTD XSD

1) DTD stands forDocument
Type Definition.

XSD stands for XML Schema
Definition.

2) DTDs are derived
fromSGML syntax.

XSDs are written in XML.

3) DTD doesn't support
datatypes.

XSD supports datatypes for
elements and attributes.

4) DTD doesn't support
namespace.

XSD supports namespace.

5) DTD doesn't define
order for child elements.

XSD defines order for child
elements.

6) DTD is not extensible. XSD is extensible.

7) DTD is not simple to
learn.

XSD is simple to
learn because you don't need
to learn new language.

Advantages of XML schemas over DTDs
i.XML schema use basic XML syntax XML schemas are created by using XML syntax

whereas DTD’s use separate syntax.

ii.XML schema support namespace XML schemas support namespace functionality,
but DTDs doesn’t support this functionality completely. They also allow the usage
of multiple namespaces in XML documents with less rigidity. For example, while
designing an XML schema the prefixes of namespace are not required since the
end-user to decide it. But, in DTDs the namespace prefixes are essential to be
specified.

iii.XML schema allow the validation of text elements based on datatypes XML
schemas specify the type of textual data that can be used within attributes and
elements. This is done by the simple type declarations . Hence XML schemas can
control the documents more rigidly. The most important feature of XML schemas
is that , it include the commonly used simple types

iv.XML schema allows the creation of complex and reusable content models easily In
a DTD , content model can be reused only when the utilization of parameter
entities is allowed . But , this may lead to some situations where the parts of DTD
are difficult to be reusable. XML schemas provide a wide variety of mechanisms to
reuse the content models and also model some complex programming concepts
easily.

Description of XML Schema
• <xs:element name="employee"> : It defines the

element name employee.
• <xs:complexType> : It defines that the element

'employee' is complex type.
• <xs:sequence> : It defines that the complex type is a

sequence of elements.
• <xs:element name="firstname" type="xs:string"/> : It

defines that the element 'firstname' is of string/text
type.

• <xs:element name="lastname" type="xs:string"/> : It
defines that the element 'lastname' is of string/text
type.

• <xs:element name="email" type="xs:string"/> : It
defines that the element 'email' is of string/text type

XML Schema Data types
• There are two types of data types in XML schema.

– simpleType
– complexType

• SimpleType
– The simpleType allows you to have text-based elements. It

contains less attributes, child elements, and cannot be left
empty.
• <xs:element name="Customer_dob" type="xs:date" />
• <xs:element name="Customer_address" type="xs:string" />
• <xs:element name="Supplier_phone" type="xs:integer" />
• <xs:element name="Supplier_address" type="xs:string" />

• ComplexType
– The complexType allows you to hold multiple attributes and

elements. It can contain additional sub elements and can be left
empty.
• <xs:element name = "name" type = "xs:string" />
• <xs:element name = "company" type = "xs:string" />

XML Schema Example
employee.xsd

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.javatpoint.com"
xmlns="http://www.javatpoint.com"
elementFormDefault="qualified">

<xs:element name="employee">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 <xs:element name="email" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

</xs:schema>

employee.xml

<?xml version="1.0"?>
<employee
xmlns="http://www.javatpoint.com"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.javatpoint.com employee.xsd">

 <firstname>vimal</firstname>
 <lastname>jaiswal</lastname>
 <email>vimal@javatpoint.com</email>
</employee>

Global Types

• With the global type, you can define a single type in your document, which
can be used by all other references. For example, suppose you want to
generalize the person and company for different addresses of the company.
In such case, you can define a general type as follows −

– <xs:element name = "AddressType">

– <xs:complexType>

– <xs:sequence>

– <xs:element name = "name" type = "xs:string" />

– <xs:element name = "company" type = "xs:string" />

– </xs:sequence>

– </xs:complexType>

– </xs:element>

• Now let us use this type in our example as follows −
– <xs:element name = "Address1">
– <xs:complexType>
– <xs:sequence>
– <xs:element name = "address" type = "AddressType" />
– <xs:element name = "phone1" type = "xs:int" />
– </xs:sequence>
– </xs:complexType>
– </xs:element>

– <xs:element name = "Address2">
– <xs:complexType>
– <xs:sequence>
– <xs:element name = "address" type = "AddressType" />
– <xs:element name = "phone2" type = "xs:int" />
– </xs:sequence>
– </xs:complexType>
– </xs:element>

• Instead of having to define the name and the company twice (once
for Address1 and once for Address2), we now have a single definition. This
makes maintenance simpler, i.e., if you decide to add "Postcode" elements
to the address, you need to add them at just one place.

Attributes

• Attributes in XSD provide extra information within
an element. Attributes
have name and type property as shown below –

• Syntax:

 <xs:attribute name = "Name_of_attribute" type =
"data_type"/>

• Example:

<xs:attribute name = "designation" type =
"xs:string"/>

XSL

• XSL is a language for expressing style sheets. An XSL
style sheet is, like with CSS, a file that describes how to
display an XML document of a given type. XSL shares
the functionality and is compatible with CSS2 (although
it uses a different syntax). It also adds:

• a. A transformation language for XML
documents: XSLT.

• b. A navigation language for XML documents: XPath.

• c. A formatting language for XML documents: XSL-FO

https://www.w3.org/Style/CSS

XSLT
 XSLT, Extensible Stylesheet Language Transformations, provides the ability

to transform XML data from one format to another automatically.

How XSLT Works

 An XSLT stylesheet is used to define the transformation rules to be applied
on the target XML document. XSLT stylesheet is written in XML format.
XSLT Processor takes the XSLT stylesheet and applies the transformation
rules on the target XML document and then it generates a formatted
document in the form of XML, HTML, or text format. This formatted
document is then utilized by XSLT formatter to generate the actual output
which is to be displayed to the end-user.

Advantages

– Independent of programming. Transformations are written in a
separate xsl file which is again an XML document.

– Output can be altered by simply modifying the transformations in xsl
file. No need to change any code. So Web designers can edit the
stylesheet and can see the change in the output quickly.

XSLT Elements
XSLT <xsl:element>
• The <xsl:element> element is used to create and name an element node

in the output document.
• Syntax

 <xsl:element
name="element_name"
namespace="URI"
use-attribute-sets="namelist">
 <!-- Content:template -->
</xsl:element>

XSLT <template> Element
• A template contains rules to apply when a specified node is matched.
• Following is the syntax declaration of <xsl:template> element:
 <xsl:template name= Qname match = Pattern priority = number mode

= QName>
 …
 </xsl:template>

XSLT Elements

XSLT <xsl:apply-template> Element
• The XSLT <xsl:apply-template> element is used to tell XSLT processor to

find the appropriate template to apply according to the type and context
of each selected node.

 <xsl:apply-template
 select = Expression
 mode = QName>
 </xsl:apply-template>

XSLT <xsl:value-of> Element
• The XSLT <xsl:value-of> element is used to extract the value of selected

node. It puts the value of selected node as per XPath expression, as text.
 <xsl:value-of
 select = Expression
 disable-output-escaping = "yes" | "no">
 </xsl:value-of>

XSLT Elements
• XSLT <xsl:for-each> Element
• The XSLT <xsl:for-each> element is used to apply a template repeatedly for each node.
 <xsl:for-each
 select = Expression>
 </xsl:for-each>

Example:
 <xsl:for-each select="class/employee">
 <tr>
 <td>
 <!-- value-of processing instruction
 process the value of the element matching the XPath expression
 -->
 <xsl:value-of select = "@id"/>
 </td>
 <td><xsl:value-of select = "firstname"/></td>
 <td><xsl:value-of select = "lastname"/></td>
 <td><xsl:value-of select = "nickname"/></td>
 <td><xsl:value-of select = "salary"/></td>
 </tr>
 </xsl:for-each>

XSLT Elements
XSLT <xsl:sort> Element

• The XSLT <xsl:sort> element is used to specify a sort criteria on the nodes. It displays the
output in sorted form.

• The <xml:sort> element is added inside the <xsl:for-each> element in the XSL file, to sort the
output.

<xsl:sort

 select = string-expression

 lang = { nmtoken }

 data-type = { "text" | "number" | QName }

 order = { "ascending" | "descending" }

 case-order = { "upper-first" | "lower-first" } >

</xsl:sort>

 XSLT <xsl:if> Element

• The XSLT <xsl:if> element is used to specify a conditional test against the content of the XML
file.

<xsl:if test="expression">

 ...some output if the expression is true...

</xsl:if>

XSLT Elements
XSLT <xsl:choose> Element

• The XSLT <xsl:choose> element is used to specify
a multiple conditional test against the content of
nodes with the <xsl:otherwise> and <xsl:when>
elements.

<xsl:choose>

 <xsl:when test="expression">

 ... some output ...

 </xsl:when>

 <xsl:otherwise>

 ... some output

 </xsl:otherwise>

</xsl:choose>

 Example:
<xsl:choose>
 <xsl:when test = "salary > 50000">
 High
 </xsl:when>

 <xsl:when test = "salary > 40000">
 Medium
 </xsl:when>

 <xsl:otherwise>
 Low
 </xsl:otherwise>
 </xsl:choose>

XSLT Elements

• XSLT <xsl:import> Element

• The XSLT <xsl:import> element is used to
import the content of one stylesheet to
another stylesheet. The importing stylesheet
has higher precedence over imported
stylesheet.

 <xsl:import href = "uri">

 </xsl:import>

References

• https://www.w3schools.com/xml/

• https://www.tutorialspoint.com/xml/index.ht
m

• https://beginnersbook.com/2018/10/xml-
tutorial-learn-xml/

• https://www.javatpoint.com/xml-tutorial

• https://www.geeksforgeeks.org/xml-basics/

• https://www.quackit.com/xml/tutorial/

https://www.w3schools.com/xml/
https://www.tutorialspoint.com/xml/index.htm
https://www.tutorialspoint.com/xml/index.htm
https://beginnersbook.com/2018/10/xml-tutorial-learn-xml/
https://beginnersbook.com/2018/10/xml-tutorial-learn-xml/
https://beginnersbook.com/2018/10/xml-tutorial-learn-xml/
https://beginnersbook.com/2018/10/xml-tutorial-learn-xml/
https://beginnersbook.com/2018/10/xml-tutorial-learn-xml/
https://beginnersbook.com/2018/10/xml-tutorial-learn-xml/
https://beginnersbook.com/2018/10/xml-tutorial-learn-xml/
https://www.javatpoint.com/xml-tutorial
https://www.javatpoint.com/xml-tutorial
https://www.javatpoint.com/xml-tutorial
https://www.geeksforgeeks.org/xml-basics/
https://www.geeksforgeeks.org/xml-basics/
https://www.geeksforgeeks.org/xml-basics/
https://www.quackit.com/xml/tutorial/

Contents

Origin and Use of Perl- Scalars and their
Operations – Assignment Statements and Simple
Input and Output – Control Statements-
Fundamentals of Arrays – Hashes References-
Functions- Pattern Matching – File Input and
Output – Simple programs in Perl -Using Perl for
CGI Programming.

Perl Introduction
 • Perl is a programming language which was originally developed for script

manipulation. But now Perl is used for a variety of purpose including web
development, GUI development, system administration and many more. It
is a stable, cross platform programming language.

• For web development, Perl CGI is used. CGI is the gateway which interacts
with the web browser and Perl in a system.

• Its typical use is extracting information from a text file and printing out
report for converting a text file into another form. This is because it got its
name after the expression, "Practical Extraction and Report Language".

• Programs written in Perl are called Perl scripts, whereas system programs to
execute Perl scripts are called Perl program.

• Perl is an interpreted language. When a Perl program run, it is first
compiled into a byte code, then it is converted into machine instructions. So
writing something in Perl instead of C saves your time.

 Website to install PERL : “http://padre.perlide.org/”

Perl History

• Perl was developed by Larry Wall in 1987 as a scripting
language to make report processing easier.

• It was first released with version 1.0 on December 18, 1987.
• Perl 2, released in 1988 adding a much better regular

expression engine.
• Perl 3, released in 1989 adding support for binary data

streams.
• Perl 4, released in 1991 with a better documentation than

earlier.
• Perl 5, released on October 17, 1994. It added many new

features to its last version like objects, variables, references
and modules.

• The latest version 5.24 is released on May 9, 2016.

Perl Features
• Perl supports both procedural and object-oriented programming.

• It is easily extendible as it supports 25,000 open source modules.

• It supports Unicode.

• It includes powerful tools to process text to make it compatible with
mark-up languages like HTML, XML.

• Its database integration interface , DBI supports third-party
databases including Oracle, Sybase, Postgres, MySQL and others.

• It is embeddable in other systems such as web servers and database
servers.

• It is open source software licensed under GNU.

• Many frameworks are written in Perl.

• It can handle encrypted web data including e-commerce
transactions.

• It is a cross platform language.

Where is PERL used
• The power of Perl can be implemented in many fields. The most popular

use of Perl is in Web development.

• Perl is also used to automate many tasks in the Web servers and other
administration jobs, it can automatically generate emails and clean up
systems.

• Perl is still used for its original purpose i.e. extracting data and generating
reports.

• Perl has become a popular language used in web development,
networking and bioinformatics too.

• Apart from all this perl can also be used for CGI programming.

• Perl can also be utilized for image creation & manipulation.

• Perl is also known for implementation of OOP(object oriented
programming) practices and supports all forms of inheritance (simple,
multiple & diamond), polymorphism and encapsulation.

• Perl is flexible enough to support Procedural as well as OOP practices
simultaneously.

Use of Perl
• Perl is very easy to learn, especially if you have a background in

computer programming. Perl was designed to be easy for
humans to write and understand rather than making it easy for
processing by computers. It uses regular expressions.

• Perl is extremely portable. It can run on any operating system
that has Perl interpreter installed, so it is platform independent.

• Small specific tasks in Perl become very easy and quick.

• Perl is very good at text processing, File handling and output
reporting.

• It is free to use.

Pros & Cons in PERL
PROS
• Compared to other

Programming languages Perl is
most powerful for text handling
and Parsing.

• This is an interpreted language
with fast execution time as
there is no need to compile a
Perl script.

• Simple and easy to program and
understand.

• It is object oriented.
• Used in Web development for

mostly Payment Gateways.
• Used in Automation and to test

most of the Network and
Storage related stuff.

CONS

• There is minimal GUI support
as compared to other
Programming languages.

• You need to refer to complex
library modules which are not
so easy to understand.

• Understanding complex
Patterns requires experience.

Perl Example 1
Example:

!/usr/bin/perl

Print a message

print "Hello World! with Perl\n";

– #!/usr/local/bin/perl, tells where to find the Perl compiler on

your system.
– Perl statements end with semicolon (;)
– The (\n) is used to denote a new line.
– As it is a string, it will be enclosed in double quotes ("").
– And finally 'print' will display it on the screen.
– Perl is case-sensitive.

Saving File:

– Save the file with (.pl) extension.

Perl print() and say()

• The say() is not supported by the older perl
versions.

• It acts like print() with only difference that it
automatically adds a new line at the end
without mentioning (\n).

Note: you need to mention the version in your
 script to use the say() function.

Comments in Perl

• Comments in any programming language are
friends of developers.

• Comments can be used to make program user
friendly and they are simply skipped by the
interpreter without impacting the code
functionality.

• For example:
This is a single line comment

print "Hello, world\n“;

• Multi-line comments start with = and with
the =cut statement.

=begin comment.This is another comment. And it spans
multiple lines! =cut

Single and Double Quotes in Perl
#!/usr/bin/perl $a = 10;

print "Value of a = $a\n";

print 'Value of a = $a\n';

This will produce the following result −
Value of a = 10

Value of a = $a\n$

• Only double quotes interpolate variables and
special characters such as newlines \n,
whereas single quote does not interpolate any
variable or special character.

"Here" Documents
• You can store or print multiline text with a great comfort. Even you can make use

of variables inside the "here" document. Below is a simple syntax, check carefully
there must be no space between the << and the identifier.

• An identifier may be either a bare word or some quoted text like we used EOF
below. If identifier is quoted, the type of quote you use determines the treatment
of the text inside the here document, just as in regular quoting. An unquoted
identifier works like double quotes.

Scalars and Their Operations

• Scalar variables start with $
• Scalar variables hold strings or numbers, and they

are interchangeable
• When you first use (declare) a variable use the

my keyword (not necessary) to indicate the
variable’s scope.

• Name must begin with a letter; any number of
letters, digits, or underscore characters can follow

• Names are case sensitive
• Examples:

– my $priority = 9;

– my $priority = “A”;

Scalars and Their Operations
(continued)

• Numeric Operators

 - Like those of C, Java, etc.

Scalars and Their Operations
(continued)

• String Operators

 - Concatenation - denoted by a period
• e.g., If the value of $dessert is "apple", the value of

 $dessert . " pie" is "apple pie"

 - Repetition - denoted by x
• e.g., If the value of $greeting is "hello ", the value of

 $greeting x 3 is "hello hello hello “

• String Functions

 - Functions and operators are closely related in Perl
• e.g., if cube is a predefined function, it can be called with

either cube(x) or cube x

Scalars and Their Operations
(continued)

Arithmetic in Perl

Perl Program to illustrate the Arithmetic Operators
Operands
$a = 10;
$b = 4;
using arithmetic operators
print "Addition is: ", $a + $b, "\n";
print "Subtraction is: ", $a - $b, "\n" ;
print "Multiplication is: ", $a * $b, "\n";
print "Division is: ", $a / $b, "\n";
print "Modulus is: ", $a % $b, "\n";
print "Exponent is: ", $a ** $b, "\n";

String and assignment operators

• You sometimes may need to group terms
– Use parentheses ()
– (5-6)*2 is not 5-(6*2)

Assignment Operators
• Assignment operators are used to assigning a value to a variable. The

left side operand of the assignment operator is a variable and right
side operand of the assignment operator is a value.

• Different types of assignment operators are shown below:

• “=”(Simple Assignment) : This is the simplest assignment
operator. This operator is used to assign the value on the right
to the variable on the left. Example :$a = 10; $b = 20;

• “+=”(Add Assignment) : This operator is combination of ‘+’ and
‘=’ operators. This operator first adds the current value of the
variable on left to the value on the right and then assigns the
result to the variable on the left.
Example :($a += $b) can be written as ($a = $a + $b) If initially
value stored in a is 5. Then ($a += 6) = 11.

Assignment Operators (continued)

• “-=”(Subtract Assignment) : This operator is combination of ‘-‘ and ‘=’
operators. This operator first subtracts the current value of the variable on
left from the value on the right and then assigns the result to the variable
on the left.
Example :($a -= $b) can be written as ($a = $a - $b) If initially value stored
in a is 8. Then ($a -= 6) = 2.

• “*=”(Multiply Assignment) : This operator is combination of ‘*’ and ‘=’
operators. This operator first multiplies the current value of the variable
on left to the value on the right and then assigns the result to the variable
on the left.
Example :
($a *= $b) can be written as ($a = $a * $b) If initially value stored in a is 5.
Then ($a *= 6) = 30.

Assignment Operators (continued)

• “/=”(Division Assignment) : This operator is combination of ‘/’ and ‘=’ operators.
This operator first divides the current value of the variable on left by the value on
the right and then assigns the result to the variable on the left.
Example :($a /= $b) can be written as ($a = $a / $b) If initially value stored in a is 6.
Then ($a /= 2) = 3.

• “%=”(Modulus Assignment) : This operator is combination of ‘%’ and ‘=’ operators.
This operator first modulo the current value of the variable on left by the value on
the right and then assigns the result to the variable on the left.
Example :($a %= $b) can be written as ($a = $a % $b) If initially value stored in a is
6. Then ($a %= 2) = 0.

• “**=”(Exponent Assignment) : This operator is combination of ‘**’ and ‘=’
operators. This operator first exponent the current value of the variable on left by
the value on the right and then assigns the result to the variable on the left.
Example :($a **= $b) can be written as ($a = $a ** $b) If initially value stored in a
is 6. Then ($a **= 2) = 36.

Control Statements
• Perl is an iterative language in which control flows from the first

statement in the program to the last statement unless something
interrupts. Some of the things that can interrupt this linear flow
are conditional branches and loop structures.

statement block

• Statement blocks provide a mechanism for grouping statements
that are to be executed as a result some expression being
evaluated. They are used in all of the control structures discussed
below. Statement blocks are designated by pairs of curly braces.

Syntax: {

 stmt_1;

 stmt_2;

 stmt_3;

 }

if statement
Form: if (EXPR) BLOCK

Syntax:

if (expression)

{

 true_stmt_1;

 true_stmt_2;

 true_stmt_3;

}

if/else statement
Form: if (EXPR) BLOCK else
BLOCK

Syntax:

if (expression)

{

true_stmt_1;

true_stmt_2;

true_stmt_3;

}

else

{

false_stmt_1;

false_stmt_2;

false_stmt_3;

}

if/elseif/else statement
Form:
 if (EXPR) BLOCK elseif (EXPR) BLOCK . . .

else BLOCK

Syntax:

if (expression_A)

{

A_true_stmt_1;

A_true_stmt_2;

}

 elseif (expression_B)

{

B_true_stmt_1;

B_true_stmt_2;

}

else

{

false_stmt_1;

false_stmt_2;

}

Control Statements (Continued)

while statement - Repeats a statement or group of statements while a given
condition is true. It tests the condition before executing the loop body.

Form: LABEL: while (EXPR) BLOCK

 The LABEL in this and the following control structures is optional. In

addition to description, it also provides function in the quasi-goto statements:

last, next, and redo. Perl conventional practice calls for labels to be expressed

in uppercase to avoid confusion with variables or key words.

Syntax:
ALABEL: while (expression)

 {

 stmt_1;

 stmt_2;

 stmt_3;

 }

Control Statements (Continued)

last operator - Terminates the loop statement and transfers execution to the
statement immediately following the loop.

 The last operator, as well as the next and redo operators that follow, apply only

to loop control structures. They cause execution to jump from where they occur

to some other position, defined with respect to the block structure of the

encompassing control structure. Thus, they function as limited forms

of goto statements.

 Last causes control to jump from where it occurs to the first statement following

the enclosing block.

Syntax:

 ALABEL: while (expression)

 {

 stmt_1;

 stmt_2;

 last;

 stmt_3;

 } # last jumps to here

If last occurs within nested control structures, the jump can be made to the

end of an outer loop by adding a label to that loop and specifying the label in

the last statement.

Syntax:

ALABEL: while (expression)

 {

 stmt_1;

 stmt_2;

 BLABEL: while (expression)

 {

 stmt_a;

 stmt_b;

 last ALABEL;

 stmt_c;

 }

 stmt_3;

 } # last jumps to here

next operator - Causes the loop to skip the remainder of its body and
immediately retest its condition prior to reiterating.

 The next operator is similar to last except that execution jumps to the

end of the block, but remains inside the block, rather than exiting the

block. Thus, iteration continues normally.

Syntax:

ALABEL: while (expression)

 {

stmt_1;

stmt_2;

next;

stmt_3;

next jumps to here

 }

 As with last, next can be used with a label to jump to an outer designated

loop.

redo operator - The redo command restarts the loop block without evaluating
the conditional again. The continue block, if any, is not executed.

 The redo operator is similar to next except that execution jumps to the top

of the block without re-evaluating the control expression.

Syntax:

ALABEL: while (expression)

{

redo jumps to here

stmt_1;

stmt_2;

redo;

stmt_3;

}

 As with last, next can be used with a label to jump to an outer designated

loop.

until statement - Repeats a statement or group of statements until a given condition
becomes true. It tests the condition before executing the loop body.
Form: LABEL: until (EXPR) BLOCK

Syntax:

 ALABEL: until (expression)

 { # while not

 stmt_1;

 stmt_2;

 }

Control Statements (Continued)

for statement - Executes a sequence of statements multiple times and abbreviates the
code that manages the loop variable
Form: LABEL: for (EXPR; EXPR; EXPR) BLOCK

Syntax:

 ALABEL: for (initial exp; test exp; increment exp) # e.g., ($i=1; $i<5; $i++)

 {

 stmt_1;

 stmt_2;

 }

foreach statement - The foreach loop iterates over a normal list value and sets the
variable VAR to be each element of the list in turn.
Form: LABEL: foreach VAR (EXPR) BLOCK

Syntax:

ALABEL: foreach $i (@aList)

{

stmt_1;

stmt_2;

stmt_3;

}

Perl program to illustrate
the foreach loop

Array
@data = (‘HI’, ‘HELLO’, ‘WELCOME’);

foreach loop
foreach $word (@data)
{
 print $word
}

Example:

given (expression)
{
 when (condition)
 {
 statement(s);
 }
 when (condition)
 {
 statement(s);
 }
 . . .
 default
 {
 statement(s);
 }
}

Switch Statement

 It is used to execute the code from multiple conditions. There is no case or
switch statement in perl. Instead we use 'when' in place of case and 'given' in
place of switch.

Syntax:

goto statement

The goto statement in perl is a jump statement which is sometimes also referred

to as unconditional jump statement. The goto statement can be used to jump

from anywhere to anywhere within a function.

LABEL:
Statement 1;
Statement 2;
.
Statement n;
goto LABEL;

Syntax:

goto statement in Perl is of three forms- Label,

Expression, and Subroutine.

1.Label: It will simply jump to the statement

marked with the LABEL, and will continue the

execution from that statement.

2.Expression: In this form, there will be an

expression that will return a Label name after

evaluation and goto will make it jump to the

labeled statement.

3.Subroutine: goto will transfer the compiler to

the subroutine of the given name from the

currently running subroutine.

Perl program to print numbers
from 1 to 10 using goto statement

function to print numbers from 1 to
10
sub printNumbers()
{
 my $n = 1;
label:
 print "$n ";
 $n++;
 if ($n <= 10)
 {
 goto label;
 }
}

Driver Code
printNumbers();

Example for goto statement:

Output:

1 2 3 4 5 6 7 8 9 10

Example for goto statement using Expression:

An expression can also be used to give a call to a specific label and pass the

execution control to that label. This expression when passed to the goto
statement, evaluates to generate a label name, and further execution is

continued from that statement defined by that label name.

Defining two strings which contain label name in parts
$a = "lab";
$b = "el";
function to print numbers from 1 to 10
sub printNumbers()
{
 my $n = 1;
label:
 print "$n ";
 $n++;
 if ($n <= 10)
 {
 # Passing Expression to label name
 goto $a.$b;
 }
}
Driver Code
printNumbers();

Example:

Example for goto statement using subroutine:

A subroutine can also be called with the use of the goto statement. This

subroutine is called from within another subroutine or individually based on its

use. It holds the work that is to be performed next to the calling statement. This

method can be used to call a function recursively to print a series or a range of

characters.

Perl program to print numbers from 1 to 10 using goto statement
 # function to print numbers from 1 to 10
sub label
{
 print "$n ";
 $n++;

 if($n <= 10)
 {
 goto &label;
 }
}

Driver Code
my $n = 1;
label();

Example:

A continue BLOCK, is always executed just before the conditional is about to be
evaluated again. A continue statement can be used with while and foreach loops. A
continue statement can also be used alone along with a BLOCK of code in which case it
will be assumed as a flow control statement rather than a function.

Continue Statement

Syntax

while(condition)

{

statement(s);

}

continue

{

statement(s);

}

foreach $a (@listA)

{

statement(s);

}

continue

{

statement(s);

}

continue

{

statement(s);

}

Perl Array

A Perl array variable stores an ordered list of scalar values.
Array variables are preceeded by an "at" (@) sign.
To refer a single element of Perl array, variable name will be preceded with
dollar ($) sign followed by index of element in the square bracket.

Syntax: @arrayName = (element1, element2, element3..);

Perl Simple Array Example

#!/usr/bin/perl
 @num = (2015, 2016, 2017);
@string = ("One", "Two", "Three");
print "$num[0]\n";
print "$num[1]\n";
print "$num[2]\n";
print "$string[0]\n";
print "$string[1]\n";
print "$string[2]\n";

Output:

2015

2016

2017

One

Two

Three

In the above example, we have defined two arrays, one with number element
and other with string element. Both arrays are printed with their index elements.

#!/usr/bin/perl

@ages = (25, 30, 40);

@names = ("John Paul", "Lisa", "Kumar");

print "\$ages[0] = $ages[0]\n";

print "\$ages[1] = $ages[1]\n";

print "\$ages[2] = $ages[2]\n";

print "\$names[0] = $names[0]\n";

print "\$names[1] = $names[1]\n";

print "\$names[2] = $names[2]\n";

Perl Simple Array Example-2

Here we have used the escape sign (\) before the $ sign just to print it. Other
Perl will understand it as a variable and will print its value.

$ages[0] = 25

$ages[1] = 30

$ages[2] = 40

$names[0] = John Paul

$names[1] = Lisa

$names[2] = Kumar

Output:

Array Creation

Array variables are prefixed with the @ sign and are populated using either
parentheses or the qw operator. For Example,

@array = (1, 2, 'Hello');

@array = qw/This is an array/;

The second line uses the qw// operator, which returns a list of strings,
separating the delimited string by white space. In this example, this leads to a
four-element array; the first element is 'this' and last (fourth) is 'array'. This
means that you can use different lines as follows −

@days = qw/Monday

Tuesday

...

Sunday/;

You can also populate an array by assigning each value individually as follows −

$array[0] = 'Monday';

...

$array[6] = 'Sunday';

Accessing Array Elements
When accessing individual elements from an array, you must prefix the variable
with a dollar sign ($) and then append the element index within the square
brackets after the name of the variable. For example −

#!/usr/bin/perl

@days = qw/Mon Tue Wed Thu Fri Sat Sun/;

print "$days[0]\n";

print "$days[1]\n";

print "$days[2]\n";

print "$days[6]\n";

print "$days[-1]\n";

print "$days[-7]\n";

 This will produce the
 following result −

Mon

Tue

Wed

Sun

Sun

Mon

Array indices start from zero, so to access the first element you need to give 0 as
indices. You can also give a negative index, in which case you select the element
from the end, rather than the beginning, of the array. This means the following −

print $days[-1]; # outputs Sun

print $days[-7]; # outputs Mon

Sequential Number Arrays
Perl offers a shortcut for sequential numbers and letters. Rather than typing out
each element when counting to 100 for example, we can do something like as
follows −

#!/usr/bin/perl

@var_10 = (1..10);

@var_20 = (10..20);

@var_abc = (a..z);

print "@var_10\n"; # Prints number from 1 to 10

print "@var_20\n"; # Prints number from 10 to 20

print "@var_abc\n"; # Prints number from a to z

Here double dot (..) is called range operator. This will produce the following
result −

1 2 3 4 5 6 7 8 9 10

10 11 12 13 14 15 16 17 18 19 20

a b c d e f g h i j k l m n o p q r s t u v w x y z

Perl Array Size or Length

The size of an array is determined with scalar context on the array. The
returned value will be always one greater than the largest index. In short the
size of an array will be ($#array + 1). Here, $#array is the maximum index of
the array.

@array = (you, me, us);
$array[5] = 4;
$size = @array;
$index_max = $#array;
print "Size: $size\n";
print "Maximum Index: $index_max\n";

Size: 6
Maximum Index: 5

Output:

In the output, there are only three elements containing information, but the
give array has total 5 elements.

Perl Array Functions

You can add or remove an element from an array using some array functions.
We'll discuss following array Perl functions:

Push
Pop
Shift
Unshift

1) Push on Array
 The push array function appends a new element at the end of the array.
Example:
 @array = ("pink", "red", "blue");
 push @array, "orange";
 print "@array\n";
Output:
 pink red blue orange

In the above program, "orange" element is added at the end of the array.

2) Pop on Array

 The pop array function removes the last element from the array.
Example:

@array = ("pink", "red", "blue");
 pop @array;
 print "@array\n";
Output:
 pink red

In the above program, "blue" element is removed from the end of the
array.

3) Shift on Array

 The shift array function removes the left most element of array
and thus shorten the array by 1.
Example:
 @array = ("pink", "red", "blue");
 shift @array;
 print "@array\n";
Output:
 red blue

In the above program, "pink" is removed from the array.

4) Unshift on Array

 The unshift array function adds a new element at the start of
the array.
Example:
 @array = ("pink", "red", "blue");
 unshift @array, "orange";
 print "@array\n";
Output:
 orange pink red blue

In the above program, "orange" is added at the start of the array.

Slicing Array Elements
You can also extract a "slice" from an array - that is, you can select more than
one item from an array in order to produce another array.

#!/usr/bin/perl

@days = qw/Mon Tue Wed Thu Fri Sat Sun/;

@weekdays = @days[3,4,5];

print "@weekdays\n";

This will produce the
following result −

Thu Fri Sat

The specification for a slice must have a list of valid indices, either positive or
negative, each separated by a comma.

#!/usr/bin/perl

@days = qw/Mon Tue Wed Thu Fri Sat Sun/;

@weekdays = @days[3..5];

print "@weekdays\n";

For speed, you can also use the .. range operator −

This will produce the following result − Thu Fri Sat

splice @ARRAY, OFFSET [, LENGTH [, LIST]]

This function will remove the elements of @ARRAY designated by OFFSET
and LENGTH, and replaces them with LIST, if specified. Finally, it returns
the elements removed from the array.
Following is the example −

Replacing Array Elements
Now we are going to introduce one more function called splice(), which has the
following syntax −

#!/usr/bin/perl

@nums = (1..20);

print "Before - @nums\n";

splice(@nums, 5, 5, 21..25);

print "After - @nums\n";

This will produce the following result −

Before - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
After - 1 2 3 4 5 21 22 23 24 25 11 12 13 14 15 16 17 18 19 20

Here, the actual replacement begins with the 6th number after that five
elements are then replaced from 6 to 10 with the numbers 21, 22, 23, 24 and
25.

Perl Strings to Arrays, split()
 With the help of split() function, we can split a string into array of
strings and returns it.

split [PATTERN [, EXPR [, LIMIT]]]

Syntax :

#!/usr/bin/perl

define Strings

$var_string = "Rain-Drops-On-Roses-And-Whiskers-On-Kittens";

$var_names = "Larry,David,Roger,Ken,Michael,Tom";

transform above strings into arrays.

@string = split('-', $var_string);

@names = split(',', $var_names);

print "$string[3]\n"; # This will print Roses

print "$names[4]\n"; # This will print Michael

This will produce the following result −

Roses

Michael

Perl Arrays to Strings, join()
The join() function is used to combine arrays to make a string. It combines the
separate arrays into one string and returns it.

#!/usr/bin/perl

define Strings

$var_string = "Rain-Drops-On-Roses-And-Whiskers-On-Kittens";

$var_names = "Larry,David,Roger,Ken,Michael,Tom";

transform above strings into arrays.

@string = split('-', $var_string);

@names = split(',', $var_names);

$string1 = join('-', @string);

$string2 = join(',', @names);

print "$string1\n";

print "$string2\n";

This will produce the following result −

Rain-Drops-On-Roses-And-Whiskers-On-Kittens

Larry,David,Roger,Ken,Michael,Tom

Perl Merging Two Arrays, merged()

Two arrays can be merged together using merged() function as a
single string removing all the commas in between them.

Example:
 #!/usr/bin/perl
 @odd = (1,3,5);
 @even = (2, 4, 6);
 @numbers = (@odd, @even);
 print "numbers = @numbers\n";
Output:
 numbers = 1 3 5 2 4 6

In the above program, array1 and array2 are merged into one
single string and then printed.

OR

#!/usr/bin/perl

@numbers = (1,3,(4,5,6));

print "numbers = @numbers\n";

numbers = 1 3 4 5 6

Perl Sorting Arrays, sort()

 To sort an array, sort() array function is used. The sort() function sorts all the
elements of an array according to the ASCII standard.

Example:
 # defining array
 @days = ("sun", "mon", "tue", "wed", "thu", "fri", "sat");
 print "Original array: @days\n";
 # sorting array
 @days = sort(@days);
 print "Sorted array: @days\n";

Output:
 Original array: sun mon tue wed thu fri sat
 Sorted array: fri mon sat sun thu tue wed

In the above program, we have printed both original and sorted array. This array is
sorted in the alphabetical order.

Selecting Elements from Lists
The list notation is identical to that for arrays. You can extract an element
from an array by appending square brackets to the list and giving one or more
indices −

#!/usr/bin/perl

$var = (5,4,3,2,1)[4];

print "value of var = $var\n"

value of var = 1

This will produce the following result −

Similarly, we can extract slices, although without the requirement for a
leading @ character −

#!/usr/bin/perl

@list = (5,4,3,2,1)[1..3];

print "Value of list = @list\n";

Value of list = 4 3 2

This will produce the following result −

Perl Array with Loops
Perl array elements can be accessed within a loop. Diferent types of loops can
be used.
We will show array accessing with following loops:

foreach loop
for loop
while loop
until loop

Perl Array with foreach Loop
In foreach loop, the control variable is set over the elements of an array. Here, we
have specified $i as the control variable and print it.

Example:
@num = qw(10 20 30 40 50);
foreach $i (@num) {
 print "$i\n";
}

10

20

30

40

50

Output:

Perl Array with for Loop
A control variable will be passed in for loop as the index of the given array.

Example:
@num = qw(10 20 30 40 50);
for($i = 0; $i < 5; $i++){
 print "@num[$i]\n";
}

Output:

 10

 20

 30

 40

 50

Perl Array with until Loop
The until loop works like while loop, but they are opposite of each other. A while loop
runs as long as a condition is true whereas an until loop runs as long as condition is false.
Once the condition is false until loop terminates. The until loop can be written on the
right hand side of the equation as an expression modifier.

Example:
@your_name = "John";
print "@your_name\n" until $i++ > 4;

Output:

John

John

John

John

John

In the above program, once $i is greater than 4 according to the condition, loop iteration
stops.

Perl Multidimensional Array

Perl multidimensional arrays are arrays with more than one dimension. The multi
dimensional array is represented in the form of rows and columns, also called Matrix.
They can not hold arrays or hashes, they can only hold scalar values. They can contain
references to another arrays or hashes.

Perl Multidimensional Array Matrix Example
Here, we are printing a 3 dimensional matrix by combining three different arrays arr1,
arr2 and arr3. These three arrays are merged to make a matrix array final.

Two for loops are used with two control variables $i and $j.

Declaring arrays
my @arr1 = qw(0 10 0);
my @arr2 = qw(0 0 20);
my@arr3 = qw(30 0 0);
Merging all the single dimensional arrays
my @final = (\@arr1, \@arr2, \@arr3);
print "Print Using Array Index\n";
for(my $i = 0; $i <= $#final; $i++){
 # $#final gives highest index from the array
 for(my $j = 0; $j <= $#final ; $j++){
 print "$final[$i][$j] ";
 }
 print "\n";
}

Output:

Print Using Array Index

0 10 0

0 0 20

30 0 0

Perl Multidimensional Array Initialization and Declaration Example

In this example we are initializing and declaring a three dimensional Perl array .

@array = (
 [1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]
);
 for($i = 0; $i < 3; $i++)
 {
 for($j = 0; $j < 3; $j++)
 {
 print "$array[$i][$j] ";
 }
 print "\n";
 }

Output:

1 2 3

4 5 6

7 8 9

Perl Hashes
• The hashes is the most essential and influential part of the perl

language.

• A hash is a group of key-value pairs. The keys are unique strings
and values are scalar values.

• Hashes are declared using my keyword. The variable name starts
with a (%) sign.

• Hashes are like arrays but there are two differences between
them.

– First arrays are ordered but hashes are unordered.

– Second, hash elements are accessed using its value while
array elements are accessed using its index value.

• No repeating keys are allowed in hashes which makes the key
values unique inside a hash. Every key has its single value.

Syntax for Perl hashes:

my %hashName = (

 "key" => "value";

)

Perl Hash Accessing
To access single element of hash, ($) sign is used before the variable name.
And then key element is written inside {} braces.

Example

my %capitals = (
 "India" => "New Delhi",
 "South Korea" => "Seoul",
 "USA" => "Washington, D.C.",
 "Australia" => "Canberra"
);
print"$capitals{'India'}\n";
print"$capitals{'South Korea'}\n";
print"$capitals{'USA'}\n";
print"$capitals{'Australia'}\n";

Output:
New Delhi

Seoul

Washington,D.C.

Canberra

Perl Hash Indexing
Hashes are indexed using $key and $value variables. All the hash values will be
printed using a while loop. As the while loop runs, values of each of these
variables will be printed.

Example:

my %capitals = (
 "India" => "New Delhi",
 "South Korea" => "Seoul",
 "USA" => "Washington, D.C.",
 "Australia" => "Canberra"
);
LOOP THROUGH IT
while (($key, $value) = each(%capitals)){
 print $key.", ".$value."\n";
}

Output:

Australia, Canberra

India, New Delhi

USA, Washington, D.C.

South Korea, Seoul

Perl sorting Hash by key
You can sort a hash using either its key element or value element. Perl provides a
sort() function for this. In this example, we'll sort the hash by its key elements

Example:
my %capitals = (
 "India" => "New Delhi",
 "South Korea" => "Seoul",
 "USA" => "Washington, D.C.",
 "Australia" => "Canberra"
);
Foreach loop
foreach $key (sort keys %capitals) {
 print "$key: $capitals{$key}\n";
}

Output:
Australia: Canberra

India: New Delhi

South Korea: Seoul

USA: Washington: D.C.

Look at the output, all the key elements are sorted alphabetically.

Perl sorting Hash by its value
Here we'll sort hash by its value elements.

Example:
my %capitals = (
 "India" => "New Delhi",
 "South Korea" => "Seoul",
 "USA" => "Washington, D.C.",
 "UK" => "London"
);
Foreach loop
foreach $value (sort {$capitals{$a} cmp $c
apitals{$b} }
 keys %capitals)
{
 print "$value $capitals{$value}\n";
}

Output:

UK London

India New Delhi

South Korea Seoul

USA Washington D.C.

Look at the output, all the value elements are sorted alphabetically.

Perl Hash key Existence
Accessing a key-value pair from hash which doesn't exist will return error or
warnings. To prevent from this, you can check whether a key exist or not in a
hash with exists() function. It returns true if the key exists.

Example:

my %capitals = (
 "India" => "New Delhi",
 "South Korea" => "Seoul",
 "USA" => "Washington, D.C.",
 "Australia" => "Canberra"
);
if (exists($capitals{'India'}))
{
 print "found the key\n";
}

Output:

found the key

The above output shows that the 'India' key exists in the 'capitals' hash.

Perl Hash Slices
If you want only some values from a hash, you can extract them and display as
a list of values.
For this, you have to store them in an array variable with @ prefix as they will
return a list of values and then print them.

Example:

my %capitals = (
 "India" => "New Delhi",
 "South Korea" => "Seoul",
 "USA" => "Washington, D.C.",
 "Australia" => "Canberra"
);
@array = @capitals{India, USA, Australia};

print "@array\n";

Output:

New Delhi

Washington, D.C.

Canberra

Perl Hash creating Empty hash
An empty hash will always have size 0.
In this example, first we have created a hash with size 3. Then we have created
an empty hash with size 0.

Example:

my %first = ('john'=>9853147320, 'jose'=>7823654028, 'janie',=>'8850279610');
print 'hash size: ', scalar keys %first;
print "\n";
#creating emptyempty hash
my %emptyempty=();
print 'hash size: ', scalar keys %emptyempty;

Output:

hash size: 3

hash size: 0

Perl Adding Hash Elements
New key-value pair can be added in a hash by declaring them as single
element in the hash variable. Here, we are adding two key-value pair,
[Germany - Berlin] and [UK - London].

Example:
my %capitals = (
 "India" => "New Delhi",
 "South Korea" => "Seoul",
 "USA" => "Washington, D.C.",
 "Australia" => "Canberra"
);
while (($key, $value) = each(%capitals)){
 print $key.", ".$value."\n";
}
#adding new element
$capitals{Germany} = Berlin;
$capitals{UK} = London;
Printing new hash
print "\n";
while (($key, $value) = each(%capitals)){
 print $key.", ".$value."\n";
}

Output:

UK, London

Australia, Canberra

Germany, Berlin

India, New Delhi

USA, Washington D.C.

South Korea, Seoul

Perl Removing Hash Elements

To remove a hash element, use delete() function. Here, we have removed
both the key-value pairs which were added in the last example.

Example:
my %capitals = ("India" => "New Delhi",
 "South Korea" => "Seoul",
 "USA" => "Washington, D.C.",
 "Australia" => "Canberra"
 "Germany " => " Berlin"
 " UK " => "London");

while (($key, $value) = each(%apitals)){
 print $key.", ".$value."\n";
}
#removing element
delete($capitals{Germany});
delete($capitals{UK});
Printing new hash
print "\n";
while (($key, $value) = each(%capitals)){
 print $key.", ".$value."\n";
}

Output:

Australia, Canberra

India, New Delhi

USA, Washington D.C.

South Korea, Seoul

Perl deleting Vs Undefining Hash Elements

deleting: In deleting, key-value pair will be deleted from the hash.
Syntax:
delete($hash{$key});

undef: In undef, the value will be undefined but key will remain in the hash.
Syntax:
Undef $hash{$key};

In the following example, we have created a hash 'rank'.
One by one we'll undefine and remove all the key values from the hash.
On undefining a key only its value will be shown, on deleting a key it will be
completely deleted from the hash along with its value.

Perl Functions and Subroutines
Perl functions and subroutines are used to reuse a code in a program. You can
use a function at several places in your application with different parameters.

There is only one difference in function and subroutine, subroutine is created
with sub keyword and it returns a value. You can divide your code into separate
subroutines. Logically each function in each division should perform a specific
task.

Syntax of subroutine:

sub subName
{
body
}

Perl define and call subroutine function
 The syntax for Perl define a subroutine function is given below:

sub subName
{
body
}

 OR
subName(list of arguments);
&subName(list of arguments);

In the following example, we are defining a subroutine function 'myOffice'
and call it.
 #defining function
 sub myOffice
 {
 print "javaTpoint!\n";
 }
 # calling Function
 myOffice();

Output:
 javaTpoint!

Perl subroutine Function with Arguments

You can pass any number of arguments inside a subroutine. Parameters
are passed as a list in the special @_ list array variables. Hence, the first
argument to the function will be $_[0], second will be $_[1] and so on.
In this example, we are calculating perimeter of a square by passing a
single parameter.

 $squarePerimeter = perimeter(25);
 print("This is the perimter of a square with dimension 25: $square
 Perimeter\n");
 sub perimeter {
 $dimension = $_[0];
 return(4 * $dimension);
 }

Output:
 100

Perl subroutine with List
 Here the @_ variable is an array, hence it is used to supply list to
a subroutine. We have declared an array 'a' with list and call it.

 sub myList{
 my @list = @_;
 print "Here is the list @list\n";
 }
 @a = ("Orange", "Pineapple", "Mango", "Grapes", "Guava");
 # calling function with list
 myList(@a);

Output:
 Here is the list Orange Pineapple Mango Grapes Guava

Perl subroutine with Hashes

When a hash is passed to a subroutine, then hash is automatically
translated into its key-value pair.

 sub myHash{
 my (%hash) = @_;
 foreach my $key (keys %hash){
 my $value = $hash{$key};
 print "$key : $value\n";
 }
 }
 %hash = ('Carla' => 'Mother', 'Ray' => 'Father', 'Ana' => 'Daught
 er', 'Jose' => 'Son');
 # Function call with hash parameter
 myHash(%hash);

Output:

Ray : Father

Jose : Son

Carla : Mother

Ana : Daughter

Perl subroutine Local and Global Variables
By default, all the variables are global variables inside Perl. But you can
create local or private variables inside a function with 'my' keyword.
The 'my' keyword restricts the variable to a particular region of code in
which it can be used and accessed. Outside this region, this variable can
not be used.
 In the following example, we have shown both local and global
variable. First, $str is called locally (AAABBBCCCDDD) and then it is called
globally (AEIOU).

 $str = "AEIOU";
 sub abc{
 # Defining local variable
 my $str;
 $str = "AAABBBCCCDDD";
 print "Inside the function local variable is called $str\n";
 }
 # Function call
 abc();
 print "Outside the function global variable is called $str\n";
Output:
Inside the function local variable is called AAABBBCCCDDD

Outside the function global variable is called AEIOU

Perl File Handling
File handling is the most important part in any programming language. A
filehandle is an internal Perl structure that associates with a file name.
Perl File handling is important as it is helpful in accessing file such as text files, log
files or configuration files.
Perl filehandles are capable of creating, reading, opening and closing a file.

Perl Create File
We are creating a file, file1.txt with the help of open() function.
The $fh (file handle) is a scalar variable and we can define it inside or before
the open() function. Here we have define it inside the function. The '>' sign
means we are opening this file for writing. The $filename denotes the path or
file location.
Once file is open, use $fh in print statement. The print() function will print the
above text in the file.
Now we are closing $fh. Well, closing the file is not required in perl. Your file
will be automatically closed when variable goes out of scope.

EXAMPLE:

my $filename = 'file1.txt';
open(my $fh, '>', $filename) or die "Could
not open file '$filename' $!";
print $fh "Hello!! We have created this file
 as an example\n";
close $fh;
print "done\n";

Output:
done.

A file file1.txt will be created in our system.

Perl Open File
We can open a file in following ways:

(<) Syntax

The < sign is used to open an already existing file. It opens the file in read
mode.
 open FILE, "<", "fileName.txt" or die $!

(>) Syntax

The > sign is used to open and create the file if it doesn't exists. It opens
the file in write mode.
 open FILE, ">", "fileName.txt" or die $!
The “>" sign will empty the file before opening it. It will clear all your data
of that file. To prevent this use (+) sign before ">" or "<" characters.

(+>+<) Syntax

 open FILE, "+<", "fileName.txt" or die $!
 open FILE, "+>", "fileName.txt" or die $!

(>>) Syntax

The >> sign is used to read and append the file content. It places the file
pointer at the end of the file where you can append the information. Here
also, to read from this file, you need to put (+) sign before ">>" sign.
 open FILE, "<", "fileName.txt" or die $!

Perl Read File

You can read a complete file at once or you can read it one line at a time.
We'll show an example for both. Opening a file to read is similar to open a
file to write. With only one difference that ">" is used to write and "<" is
used to read the file.
We have created a file file1.txt with the following content:

This is the First Line.
This is the Second Line.
This is the Third Line.
This is the Fourth Line.

my $filename = 'file1.txt';
open(my $fh, '<:encoding(UTF-8)', $filename)
 or die "Could not open file '$filename' $!";
my $row = <$fh>;
print "$row\n";
print "done\n";

Output:

This is the First Line.

Done.

Example:

To read Single line at a time

First line of file1.txt will be displayed. Content of $row will be printed with
"done" to make it clear that we reached at the end of our program.

To read Multi lines at a time

Now we know to read single line from a file. To read multiple lines put $row in a
while loop.
Every time, when while loop will reach its condition, it will execute my $row =
<$fh>. It will read the next line from the file. At the last line, $fh will return
undef which is false and loop will terminate.

my $filename = 'file1.txt';
open(my $fh, '<:encoding(UTF-8)', $filename)
 or die "Could not open file '$filename' $!";
while (my $row = <$fh>) {
 chomp $row;
 print "$row\n";
}
print "done\n";

Example:

Output:
This is the First Line.
This is the Second Line.
This is the Third Line.
This is the Fourth Line.
Done.

Perl Write File

Through file writing, we'll append lines in the file1.txt. As already stated, new lines
will be added at the last of the file.

open (FILE, ">> file1.txt") || die "problem opening $file1.txt\n";
 print FILE "This line is added in the file1.txt\n";
FILE array of lines is written here
print FILE @lines1;
Another FILE array of lines is written here
print FILE "A complete new file is created";
write a second array of lines to the file
print FILE @lines2;

This line is added in the file1.txt
A complete new file is created

Example:

Output:

Perl Close File
Perl close file is used to close a file handle using close() function. File closing is
not compulsory in perl. Perl automatically closes file once the variable is out of
scope.

open FILE1, "file1.txt" or die $!;
...
close FILE1;

Perl File Handle Operator

File handle operator is the main method to read information from a file. It is
used to get input from user. In scalar context, it returns a single line from the
filehandle and in line context, it returns a list of lines from the filehandle.

print "What is your age?\n";
$age = <STDIN>;
if($age >= 18)
{
 print "You are eligible to vote.\n";
} else {
 print "You are not eligible to vote.\n";
 }

Perl Copying a File

done

A new file file2.pl will be created in the location
where file1.pl exists.

We can copy content of one file into another file as it is. First open file1
then open file2. Copy the content of file 1 to file2 by reading its line
through a while loop.

Opening file1 to read
open(File1Data, "<file1.txt");
Opening new file to copy content of file1
open(File2Data, ">file2.txt");
Copying data from file1 to file2.
while(<File1Data>)
{
 print File2Data $_;
}
close(File1Data);
close(File2Data);

Output:

Perl Regular Expressions
• A regular expression is a string of characters that

defines the pattern or patterns you are viewing.
• The basic method for applying a regular expression is

to use the pattern binding operators =~ and !~. The
first operator is a test and assignment operator.

• There are three regular expression operators within
Perl.
– Match Regular Expression - m//
– Substitute Regular Expression - s///
– Transliterate Regular Expression - tr///

• The forward slashes in each case act as delimiters for
the regular expression (regex) that you are specifying.
If you are comfortable with any other delimiter, then
you can use in place of forward slash.

Perl matching operator :
• ‘m' operator in Perl is used to match a pattern

within the given text. The string passed to m
operator can be enclosed within any character
which will be used as a delimiter to regular
expressions.

• To print this matched pattern and the remaining
string, m operator provides various operators
which include $, which contains whatever the
last grouping match matched.

$& – contains the entire matched string
 $` – contains everything before the matched string
 $’ – contains everything after the matched string

#!/usr/bin/perl

$bar = "This is foo and again foo";

 if ($bar =~ /foo/)

 {

 print "First time is matching\n";

 }

 else

 {

 print "First time is not matching\n";

 }

$bar = "foo";

 if ($bar =~ /foo/)

 {

 print "Second time is matching\n";

 }

 else

 {

 print "Second time is not matching\n";

 }

When this program is executed, it

produces the following result −

First time is matching

Second time is matching

#!/usr/bin/perl -w

Text String

$string = "Geeks for geeks is the best";

Let us use m operator to search

"or g"

$string =~ m/or g/;

Printing the String

print "Before: $`\n";

print "Matched: $&\n";

print "After: $'\n";

Output:

Before: Geeks f

Matched: or g

After: eeks is the best

Perl substitution operator :

• The substitution operator, s///, is really just an
extension of the match operator that allows
you to replace the text matched with some
new text.

• The basic form of the operator is −

 s/PATTERN/REPLACEMENT/;

• The PATTERN is the regular expression for the
text that we are looking for.

• The REPLACEMENT is a specification for the
text or regular expression that we want to use
to replace the found text with.

#/user/bin/perl

$string = "The cat sat on the mat";

$string =~ s/cat/dog/;

print "$string\n";

For example, we can replace all occurrences
of dog with cat using the following regular expression −

When above program is executed, it produces the following
result −

The dog sat on the mat

Perl translation operator :

• Translation is similar, but not identical, to the
principles of substitution, but unlike
substitution, translation (or transliteration)
does not use regular expressions for its search
on replacement values. The translation
operators are −
 tr/SEARCHLIST/REPLACEMENTLIST/cds
 y/SEARCHLIST/REPLACEMENTLIST/cds

• The translation replaces all occurrences of the
characters in SEARCHLIST with the
corresponding characters in
REPLACEMENTLIST.

#/user/bin/perl
$string = 'The cat sat on the mat';
$string =~ tr/a/o/;
print "$string\n";

For example, using the "The cat sat on the mat." string we have
been using in this chapter −

When above program is executed, it produces the following
result −

The cot sot on the mot.

Perl CGI

In Perl, CGI(Common Gateway Interface) is a protocol for executing scripts via web

requests. It is a set of rules and standards that define how the information is exchanged

between the web server and custom scripts. Earlier, scripting languages like Perl were

used for writing the CGI applications. And, CGI code called by HTTP server was

referred to as the CGI script. Later, the growth of the web caused the increase in need

of dynamic content through which CGI applications which were written in other

languages instead of Perl became more popular and in demand and were referred as

scripts only. The specifics of how the script is executed by the server are determined by

the server. CGI applications can perform nearly any task. For example, you can access

databases, hold telnet sessions, create Web pages on-the-fly and generate graphics, etc.

CGI is having a very simple concept, but creating a CGI application requires real

programming skills.

What is CGI?

Common Gateway Interface (CGI) is a protocol which defines the interaction

of web servers with some executable programs in order to produce dynamic

web pages. Basically, it shows how the web server sends information to the

program and the program sends the information back to the web server which

in turn can be sent back to the browser. Between web servers and external

programs, it is considered as the standard programming interface.

 CGI stands for:

CGI programs can send many types of data or media, like documents, images,

audio clips, etc. Most Web sites use CGI with fields for input and deals of

dynamic content on the Web is done mainly using CGI. It is a method

through which a web server can get/send the data from/to databases,

documents, and other programs respectively, and then present that data to

viewers through the web.

In the above figure, with the help of HTTP (Hyper Text Transfer Protocol) web browser
which is running on client machine exchanges information with the web server. Since,
CGI program and web server normally run on the same system on which the web
server resides, depending on the request from the browser, web server either
provides the document from its own document directory or executes a CGI program.

CGI Programming in Perl
1. Download “XAMPP” server.

2. After installation look for a folder naming “XAMPP” in C:

3. Now create your “.cgi” file in editor and give the path to perl

(#!"c:\xampp\perl\bin\perl.exe“ in shebang line of your program)

4. Save your file with “.cgi” extension in C:\xampp\cgi-bin.

5. Create your html file in editor and save the file with “.html” extension in

C:\xampp\htdocs.

6. Now open your web browser . Type local host.

7. If apache is running on system then it shows “It’s working!”.

8. If it’s not then open XAMPP server. This will start all services associated

with xampp.

9. If your apache is in running state then again open browser and type

localhost.

CGI File

#!"c:\xampp\perl\bin\perl.exe"

use strict;

use CGI ':standard';

my $name = param('name');

my $gender = param('gender');

my $profession = param('profession');

my @sports = param('sport');

 my $list;

 if (@sports)

{

 $list = join ', ', @sports;

}

else

{

 $list = 'Null';

}

 print header,

start_html(-title=>$name), h1("Hello, $name"), h3 p('You have Submitted the following Data:'), h4

table(Tr(td('Name:'), h4 td($name)), h4 Tr(td('Gender:'),

h4 td($gender)), h4 Tr(td('Profession:'), h4 td($profession)), h4 Tr(td('Sports:'),

h4 td($list))),

end_html;

HTML FILE

<html> <head> <title>GfG Test Example Form</title> </head>

<body>

 <h1>CGI-Example Form</h1> <h3><p>Information Required.</p></h3>

 <form action="/cgi-bin/form.cgi" method="Post">

 <table>

 <tr> <td>Name:</td> <td><input type="text" name="name"><td> </tr>

 <tr>

 <td>Gender:</td>

 <td><select name="gender" size="1">

 <option>Female</option>

 <option>Male</option>

 <option>Transgender</option>

 </select></td>

 </tr>

 <tr> <td>Profession:</td> <td><input type="text" name="profession"><td> </tr>

 <tr>

 <td>Sports:</td>

 <td><input type="checkbox" name="sport“ value="Cricket">Cricket

 <input type="checkbox" name="sport“ value="Hockey">Hockey

 <input type="checkbox" name="sport“ value="TableTennis">TableTennis

 <input type="checkbox" name="sport“ value="Football">Football</td>

 </tr>

 <tr>

 <td colspan="2"><input type="submit"></td>

 </tr>

 </table>

 </form> </body> </html>

References

• https://www.tutorialspoint.com/perl/

• https://www.javatpoint.com/perl-tutorial

• https://www.perltutorial.org/

• http://www.tizag.com/perlT/

• https://www.geeksforgeeks.org/introduction-to-
perl/

• https://www.codesdope.com/perl-file-io/

• http://sandbox.mc.edu/~bennet/perl/leccode/

https://www.tutorialspoint.com/perl/
https://www.javatpoint.com/perl-tutorial
https://www.javatpoint.com/perl-tutorial
https://www.javatpoint.com/perl-tutorial
https://www.perltutorial.org/
http://www.tizag.com/perlT/
https://www.geeksforgeeks.org/introduction-to-perl/
https://www.geeksforgeeks.org/introduction-to-perl/
https://www.geeksforgeeks.org/introduction-to-perl/
https://www.geeksforgeeks.org/introduction-to-perl/
https://www.geeksforgeeks.org/introduction-to-perl/
https://www.codesdope.com/perl-file-io/
https://www.codesdope.com/perl-file-io/
https://www.codesdope.com/perl-file-io/
https://www.codesdope.com/perl-file-io/
https://www.codesdope.com/perl-file-io/
http://sandbox.mc.edu/~bennet/perl/leccode/

CONTENTS

 Origin and Use of PHP- Overview of PHP-
General Syntactic Characteristics Operations
and Expressions- Control Statements- Arrays-
Functions-Pattern Matching- Form Handling-
Files-Cookies-Session Tracking - Database
Connectivity, Simple programs in PHP and
MySQL.

Origin of PHP

• The Hypertext Preprocessor (PHP) is a programming language
that allows web developers to create dynamic content that
interacts with databases.

• PHP is basically used for developing web based software
applications.

• PHP is an open-source, interpreted, and object-oriented
scripting language that can be executed at the server-side.

• PHP was created by Rasmus Lerdorf in 1994 but appeared in
the market in 1995.

• PHP 7.4.0 is the latest version of PHP, which was released
on 28 November.

What is a PHP File?

• PHP files can contain text, HTML, CSS,
JavaScript, and PHP code

• PHP code is executed on the server, and the
result is returned to the browser as plain
HTML

• PHP files have extension ".php"

Uses of PHP

• It handles dynamic content, database as well as session
tracking for the website.

• You can create sessions in PHP.

• It can access cookies variable and also set cookies.

• It helps to encrypt the data and apply validation.

• PHP supports several protocols such as HTTP, POP3, SNMP,
LDAP, IMAP, and many more.

• Using PHP language, you can control the user to access some
pages of your website.

• PHP can handle the forms, such as - collect the data from
users using forms, save it into the database, and return useful
information to the user. For example - Registration form.

Overview of PHP

• PHP stands for Hypertext Preprocessor.

• PHP is an interpreted language, i.e., there is no need for
compilation.

• PHP is faster than other scripting languages, for example, ASP
and JSP.

• PHP is a server-side scripting language, which is used to
manage the dynamic content of the website.

• PHP can be embedded into HTML.

• PHP is an object-oriented language.

• PHP is an open-source scripting language.

• PHP is simple and easy to learn language.

Characteristics of PHP

• Simplicity

• Efficiency

• Security

• Flexibility

• Familiarity

Applications of PHP

• PHP performs system functions, i.e. from files on a system it
can create, open, read, write, and close them.

• PHP can handle forms, i.e. gather data from files, save data to
a file, through email you can send data, return data to the
user.

• You add, delete, modify elements within your database
through PHP.

• Access cookies variables and set cookies.

• Using PHP, you can restrict users to access some pages of your
website.

• It can encrypt data.

PHP Features
• PHP is very popular language because of its simplicity and

open source. There are some important features of PHP given
below:

Performance:
PHP script is executed much faster than those scripts which are written in other
languages such as JSP and ASP. PHP uses its own memory, so the server workload
and loading time is automatically reduced, which results in faster processing speed
and better performance.
Open Source:
PHP source code and software are freely available on the web. You can develop all
the versions of PHP according to your requirement without paying any cost. All its
components are free to download and use.
Familiarity with syntax:
PHP has easily understandable syntax. Programmers are comfortable coding with it.
Embedded:
PHP code can be easily embedded within HTML tags and script.
Platform Independent:
PHP is available for WINDOWS, MAC, LINUX & UNIX operating system. A PHP
application developed in one OS can be easily executed in other OS also.
Database Support:
PHP supports all the leading databases such as MySQL, SQLite, ODBC, etc.

PHP Features (Cont..)

Error Reporting -
PHP has predefined error reporting constants to generate an error notice or
warning at runtime. E.g., E_ERROR, E_WARNING, E_STRICT, E_PARSE.
Loosely Typed Language:
PHP allows us to use a variable without declaring its datatype. It will be taken
automatically at the time of execution based on the type of data it contains on
its value.
Web servers Support:
PHP is compatible with almost all local servers used today like Apache, Netscape,
Microsoft IIS, etc.
Security:
PHP is a secure language to develop the website. It consists of multiple layers of
security to prevent threads and malicious attacks.
Control:
Different programming languages require long script or code, whereas PHP can
do the same work in a few lines of code. It has maximum control over the
websites like you can make changes easily whenever you want.

PHP Features (Cont..)

 PHP Installation

• To install PHP, we will suggest you to install AMP (Apache, MySQL, PHP)
software stack. It is available for all operating systems. There are many
AMP options available in the market that are given below:

– WAMP for Windows

– LAMP for Linux

– MAMP for Mac

– SAMP for Solaris

– FAMP for FreeBSD

• XAMPP (Cross, Apache, MySQL, PHP, Perl) for Cross Platform: It includes
some other components too such as FileZilla, OpenSSL, Webalizer,
Mercury Mail, etc.

• If you are on Windows and don't want Perl and other features of XAMPP,
you should go for WAMP. In a similar way, you may use LAMP for Linux and
MAMP for Macintosh.

Basic PHP Syntax

• A PHP script can be placed anywhere in the
document.

• A PHP script starts with <?php and ends with ?>

 <?php

 // PHP code goes here

 ?>

• The default file extension for PHP files is ".php".

• A PHP file normally contains HTML tags, and some
PHP scripting code

Example

<!DOCTYPE html>
<html>
<body>

<h1>My first PHP page</h1>

<?php
echo "Hello World!";
?>

</body>
</html>

Note: PHP statements end with a semicolon (;).

PHP Case Sensitivity

• In PHP, NO keywords (e.g. if, else, while, echo, etc.), classes, functions, and
user-defined functions are case-sensitive.

• Example:

 <!DOCTYPE html>
<html>
<body>

<?php
ECHO "Hello World!
";
echo "Hello World!
";
EcHo "Hello World!
";
?>

</body>
</html>

Hello World!
Hello World!
Hello World!

Note: However; all variable names are case-sensitive!

• Look at the example below; only the first statement will
display the value of the $color variable! This is
because$color, $COLOR, and $coLOR are treated as three
different variables:

• Example:

<!DOCTYPE html>
<html>
<body>

<?php
$color = "red";
echo "My car is " . $color . "
";
echo "My house is " . $COLOR . "
";
echo "My boat is " . $coLOR . "
";
?>

</body>
</html>

My car is red
My house is
My boat is

PHP Comments
• A comment in PHP code is a line that is not executed as a part

of the program. Its only purpose is to be read by someone
who is looking at the code.

<!DOCTYPE html>
<html>
<body>

<?php
// This is a single-line comment
This is also a single-line comment
?>

</body>
</html>

<!DOCTYPE html>
<html>
<body>

<?php
/*
This is a multiple-lines comment
block that spans over multiple
lines
*/
?>

</body>
</html>

SINGLE LINE COMMENT

MULTI LINE COMMENT

PHP Variables

• Variables are "containers" for storing information.

Creating (Declaring) PHP Variables

• In PHP, a variable starts with the $ sign, followed by the name of
the variable:

 <?php
$txt = "Hello world!";
$x = 5;
$y = 10.5;
?>

• After the execution of the statements above, the variable $txt will
hold the value Hello world!, the variable $x will hold the value 5,
and the variable $y will hold the value 10.5.

Note: When you assign a text value to a variable, put quotes around
the value.

PHP Variables (Cont..)

• A variable can have a short name (like x and y) or a more
descriptive name (age, carname, total_volume).

• Rules for PHP variables:

• A variable starts with the $ sign, followed by the name of the
variable

• A variable name must start with a letter or the underscore
character

• A variable name cannot start with a number

• A variable name can only contain alpha-numeric characters
and underscores (A-z, 0-9, and _)

• Variable names are case-sensitive ($age and $AGE are two
different variables)

Examples
<?php
$txt = "W3Schools.com";
echo "I love $txt!";
?>

<?php
$txt = "W3Schools.com";
echo "I love " . $txt . "!";
?>

or

<?php
$x = 5;
$y = 4;
echo $x + $y;
?>

9

I love W3Schools.com! I love W3Schools.com!

PHP Variables Scope
• In PHP, variables can be declared anywhere in the script.

• The scope of a variable is the part of the script where the variable
can be referenced/used.

• PHP has three different variable scopes:

Local

Global

Static

• Local Scope

– A variable declared within a function has a LOCAL SCOPE and
can only be accessed within that function.

• Global Scope

– A variable declared outside a function has a GLOBAL SCOPE
and can only be accessed outside a function

Examples

Variable with local scope:

<?php
function myTest() {
 $x = 5; // local scope
 echo "<p>Variable x inside function is: $x</p>";
}
myTest();

// using x outside the function will generate an error
echo "<p>Variable x outside function is: $x</p>";
?>

Variable x inside function is: 5

Variable x outside function is:

Examples
Variable with global scope:

<?php
$x = 5; // global scope

function myTest() {
 // using x inside this function will generate an error
 echo "<p>Variable x inside function is: $x</p>";
}
myTest();

echo "<p>Variable x outside function is: $x</p>";
?>

Variable x inside function is:

Variable x outside function is: 5

PHP The global Keyword
The global keyword is used
to access a global variable
from within a function.

Example
<?php
$x = 5;
$y = 10;

function myTest() {
 global $x, $y;
 $y = $x + $y;
}

myTest();
echo $y; // outputs 15
?>

Example
<?php
$x = 5;
$y = 10;

function myTest() {
 $GLOBALS['y'] = $GLOBALS['x'] + $GLOBALS['y'];
}

myTest();
echo $y; // outputs 15
?>

PHP also stores all global variables in an array
called $GLOBALS[index]. The index holds the name of
the variable. This array is also accessible from within
functions and can be used to update global variables
directly.

PHP The static Keyword
Normally, when a function is completed/executed, all of its variables are deleted.
However, sometimes we want a local variable NOT to be deleted. We need it for a
further job. To do this, use the static keyword when you first declare the variable:

Example
<?php
function myTest() {
 static $x = 0;
 echo $x;
 $x++;
}

myTest();
myTest();
myTest();
?>

0
1
2

Then, each time the function is called, that variable will still
have the information it contained from the last time the
function was called.

Note: The variable is still local to the function.

PHP echo and print Statements

• With PHP, echo and print are more or less the
same. They are both used to output data to
the screen.

• The differences are small:

– echo has no return value while print has a return
value of 1 so it can be used in expressions.

– echo can take multiple parameters (although such
usage is rare) while print can take one argument.

– echo is marginally faster than print.

PHP Data Types

• Variables can store data of different types, and
different data types can do different things.

• PHP supports the following data types:
– String

– Integer

– Float (floating point numbers - also called double)

– Boolean

– Array

– Object

– NULL

– Resource

PHP String

A string is a sequence of characters, like "Hello world!".
A string can be any text inside quotes.
You can use single or double quotes:

 Example

<?php
$x = "Hello world!";
$y = 'Hello world!';

echo $x;
echo "
";
echo $y;
?>

Hello world!
Hello world!

PHP Integer

An integer data type is a non-decimal number between -2,147,483,648 and
2,147,483,647.

Rules for integers:

An integer must have at least one digit
An integer must not have a decimal point
An integer can be either positive or negative
Integers can be specified in: decimal (base 10), hexadecimal (base 16),
octal (base 8), or binary (base 2) notation

In the following example $x is an integer. The PHP var_dump() function returns
the data type and value:

Example

<?php
$x = 5985;
var_dump($x);
?>

int(5985)

PHP Float

A float (floating point number) is a number with a decimal point or a number in
exponential form.
In the following example $x is a float. The PHP var_dump() function returns the
data type and value:

Example

<?php
$x = 10.365;
var_dump($x);
?>

float(10.365)

PHP Array

An array stores multiple values in one single variable.
In the following example $cars is an array. The PHP var_dump() function returns
the data type and value:

Example

<?php
$cars = array("Volvo","BMW","Toyota");
var_dump($cars);
?>

array(3) { [0]=> string(5) "Volvo" [1]=> string(3) "BMW" [2]=> string(6) "Toyota" }

PHP Object

An object is a data type which stores data and information on how to process
that data. In PHP, an object must be explicitly declared.
First we must declare a class of object. For this, we use the class keyword. A class
is a structure that can contain properties and methods:

Example

<?php
class Car {
 function Car() {
 $this->model = "VW";
 }
}

// create an object
$herbie = new Car();

// show object properties
echo $herbie->model;
?>

VW

PHP NULL Value

Null is a special data type which can have only one value: NULL.
A variable of data type NULL is a variable that has no value assigned to it.

Tip: If a variable is created without a value, it is automatically assigned a value
of NULL. Variables can also be emptied by setting the value to NULL:

Example

<?php
$x = "Hello world!";
$x = null;
var_dump($x);
?>

NULL

PHP String Functions

strlen()
The PHP strlen() function returns the length of a string.

Example
Return the length of the string "Hello world!":

<?php
echo strlen("Hello world!"); // outputs 12
?>

str_word_count()
The PHP str_word_count() function counts the number of words in a string.
Example
Count the number of word in the string "Hello world!":

<?php
echo str_word_count("Hello world!"); // outputs 2
?>

strrev()
The PHP strrev() function reverses a string.
Example
Reverse the string "Hello world!":

<?php
echo strrev("Hello world!"); // outputs !dlrow olleH
?>

strpos()
The PHP strpos() function searches for a specific text within a string. If a match
is found, the function returns the character position of the first match. If no
match is found, it will return FALSE.
Example
Search for the text "world" in the string "Hello world!":

<?php
echo strpos("Hello world!", "world"); // outputs 6
?>

Tip: The first character position in a string is 0 (not 1).

str_replace()
The PHP str_replace() function replaces some characters with some other
characters in a string.
Example
Replace the text "world" with "Dolly":

<?php
echo str_replace("world", "Dolly", "Hello world!"); // outputs Hello Dolly!
?>

PHP Numbers
<!DOCTYPE html>
<html>
<body>

<?php
// Check if the type of a variable is integer
$x = 5985;
var_dump(is_int($x));

echo "
";
// Check again...
$x = 59.85;
var_dump(is_int($x));
?>
</body>
</html>

bool(true)
bool(false)

<!DOCTYPE html>
<html>
<body>

<?php
// Check if the type of a variable is
float
$x = 10.365;
var_dump(is_float($x));
?>

</body>
</html>

bool(true)

<!DOCTYPE html>
<html>
<body>

<?php
// Check if a numeric value is finite or
infinite
$x = 1.9e411;
var_dump($x);
?>

</body>
</html>

float(INF)

<!DOCTYPE html>
<html>
<body>

<?php
// Invalid calculation will return a
NaN value
$x = acos(8);
var_dump($x);
?>

</body>
</html>

float(NAN)

<!DOCTYPE html>
<html>
<body>

<?php
// Check if the variable is numeric
$x = 5985;
var_dump(is_numeric($x));
echo "
";
$x = "5985";
var_dump(is_numeric($x));
echo "
";
$x = "59.85" + 100;
var_dump(is_numeric($x));
echo "
";
$x = "Hello";
var_dump(is_numeric($x));
?>

</body>
</html>

bool(true)
bool(true)
bool(true)
bool(false)

PHP Constants

• Constants are like variables except that once
they are defined they cannot be changed or
undefined.

• A constant is an identifier (name) for a simple
value. The value cannot be changed during the
script.

• A valid constant name starts with a letter or
underscore (no $ sign before the constant
name).

Create a PHP Constant
To create a constant, use the define() function.

Syntax
define(name, value, case-insensitive)

Parameters:

•name: Specifies the name of the constant
•value: Specifies the value of the constant
•case-insensitive: Specifies whether the constant name should be case-
insensitive. Default is false

<?php
// case-sensitive constant name
define("GREETING", "Welcome to W3Schools.com!");
echo GREETING;
?>

Example:

Welcome to W3Schools.com!

Create a constant with a case-sensitive name:

Create a constant with a case-insensitive name:
<?php
define("GREETING", "Welcome to W3Schools.com!", true);
echo greeting;
?> Welcome to W3Schools.com!

PHP Constant Arrays

<?php
define("cars", [
 "Alfa Romeo",
 "BMW",
 "Toyota"
]);
echo cars[0];
?>

Alfa Romeo

Constants are Global

<?php
define("GREETING", "Welcome to
W3Schools.com!");

function myTest() {
 echo GREETING;
}

myTest();
?>

Welcome to W3Schools.com!

PHP Operators

• Operators are used to perform operations on variables and
values.

• PHP divides the operators in the following groups:

– Arithmetic operators

– Assignment operators

– Comparison operators

– Increment/Decrement operators

– Logical operators

– String operators

– Array operators

– Conditional assignment operators

PHP Arithmetic Operators
The PHP arithmetic operators are used with numeric values to perform common
arithmetical operations, such as addition, subtraction, multiplication etc.

<!DOCTYPE html>
<html>
<body>

<?php
$x = 10;
$y = 6;

echo $x + $y, "
";
echo $x - $y, "
";
echo $x * $y, "
";
echo $x / $y, "
";
echo $x % $y, "
";
echo $x ** $y, "
";
?>

</body>
</html>

16
4
60
1.6666666666667
4
1000000

PHP Assignment Operators
The PHP assignment operators are used with numeric values to write a value to a
variable. The basic assignment operator in PHP is "=". It means that the left
operand gets set to the value of the assignment expression on the right

<!DOCTYPE html>
<html>
<body>

<?php
$x = 20;
echo $x,"
";
$x += 100;
echo $x,"
";
$x -= 30;
echo $x,"
";
$x = $x * 10;
echo $x,"
";
$x = $x / 10;
echo $x,"
";
?>

</body>
</html>

20
120
90
900
90

PHP Comparison Operators
The PHP comparison operators are used to compare two values (number or
string):

Operator Name Example Result

== Equal $x == $y Returns true if $x is equal to $y

=== Identical $x === $y Returns true if $x is equal to $y, and they are of
the same type

!= Not equal $x != $y Returns true if $x is not equal to $y

<> Not equal $x <> $y Returns true if $x is not equal to $y

!== Not identical $x !== $y Returns true if $x is not equal to $y, or they are
not of the same type

> Greater than $x > $y Returns true if $x is greater than $y

< Less than $x < $y Returns true if $x is less than $y

>= Greater than or
equal to

$x >= $y Returns true if $x is greater than or equal to $y

<= Less than or equal
to

$x <= $y Returns true if $x is less than or equal to $y

<=> Spaceship $x <=> $y Returns an integer less than, equal to, or greater
than zero, depending on if $x is less than, equal to,
or greater than $y. Introduced in PHP 7.

<!DOCTYPE html>
<html>
<body>

<?php
$x = 5;
$y = 10;
echo ($x <=> $y); // returns -1 because $x is less than $y
echo "
";
$x = 10;
$y = 10;
echo ($x <=> $y); // returns 0 because values are equal
echo "
";
$x = 15;
$y = 10;
echo ($x <=> $y); // returns +1 because $x is greater than $y
?>

</body>
</html>

-1
0
1

Example

Operator Name Description

++$x Pre-increment Increments $x by one, then returns $x

$x++ Post-increment Returns $x, then increments $x by one

--$x Pre-decrement Decrements $x by one, then returns
$x

$x-- Post-decrement Returns $x, then decrements $x by
one

PHP Increment / Decrement Operators
The PHP increment operators are used to increment a variable's value. The PHP
decrement operators are used to decrement a variable's value.

<!DOCTYPE html>
<html>
<body>

<?php
$x = 10;
echo $x++; //outputs 10
?>

</body>
</html>

<!DOCTYPE html>
<html>
<body>

<?php
$x = 10;
echo ++$x; //outputs 11
?>

</body>
</html>

Example

Operator Name Example Result

and And $x and $y True if both $x and $y are
true

or Or $x or $y True if either $x or $y is true

xor Xor $x xor $y True if either $x or $y is true,
but not both

&& And $x && $y True if both $x and $y are
true

|| Or $x || $y True if either $x or $y is true

! Not !$x True if $x is not true

PHP Logical Operators

The PHP logical operators are used to combine conditional statements.

<!DOCTYPE html>
<html>
<body>

<?php
$x = 100;
$y = 50;

if ($x == 100 && $y == 50) {
 echo "Hello world!"; // outputs Hello world!
}
?>

</body>
</html>

Example

Operator Name Example Result

. Concatenation $txt1 . $txt2 Concatenation of $txt1
and $txt2

.= Concatenation
assignment

$txt1 .= $txt2 Appends $txt2 to $txt1

PHP String Operators
PHP has two operators that are specially designed for strings.

<?php
$txt1 = "Hello";
$txt2 = " world!";
$txt1 .= $txt2;
echo $txt1;
?>

<?php
$txt1 = "Hello";
$txt2 = " world!";
echo $txt1 . $txt2;
?>

OR

Hello world!

PHP Array Operators
The PHP array operators are used to compare arrays.

Operator Name Example Result

+ Union $x + $y Union of $x and $y

== Equality $x == $y Returns true if $x and $y have the
same key/value pairs

=== Identity $x === $y Returns true if $x and $y have the
same key/value pairs in the same order
and of the same types

!= Inequality $x != $y Returns true if $x is not equal to $y

<> Inequality $x <> $y Returns true if $x is not equal to $y

!== Non-identity $x !== $y Returns true if $x is not identical to $y

<!DOCTYPE html>
<html>
<body>

<?php
$x = array("a" => "red", "b" => "green");
$y = array("c" => "blue", "d" => "yellow");

var_dump($x == $y); // outputs bool(false)
?>

</body>
</html>

Example

PHP Control Statements

• PHP supports a number of different control
structures:

• if

• else

• elseif

• switch

• while

• do-while

• for

• foreach

• and more

If

The if construct allows you to execute

a piece of code if tahe expression

provided along with it evaluates to

true.

<?php

$age = 50;

if ($age > 30)

{

 echo "Your age is greater than 30!";

}

?>

Else

The if construct allows you to execute a

piece of code if the expression evaluates

to true. On the other hand, if the

expression evaluates to false, it won't do

anything.

<?php

$age = 50;

if ($age < 30)

{

 echo "Your age is less than 30!";

}

else

{

 echo "Your age is greater than or

equal 30!";

}

?>

<?php

$age = 50;

if ($age < 30)

{

 echo "Your age is less than 30!";

}

elseif ($age > 30 && $age < 40)

{

 echo "Your age is between 30 and 40!";

}

elseif ($age > 40 && $age < 50)

{

 echo "Your age is between 40 and 50!";

}

else

{

 echo "Your age is greater than 50!";

}

?>

If-elseif-else

<?php

$favourite_site = 'Code';

 switch ($favourite_site) {

 case 'Business':

 echo "My favourite site is business.tutsplus.com!";

 break;

 case 'Code':

 echo "My favourite site is code.tutsplus.com!";

 break;

 case 'Web Design':

 echo "My favourite site is webdesign.tutsplus.com!";

 break;

 case 'Music':

 echo "My favourite site is music.tutsplus.com!";

 break;

 case 'Photography':

 echo "My favourite site is photography.tutsplus.com!";

 break;

 default:

 echo "I like everything at tutsplus.com!";

}

?>

Switch statement

While Loop

The while loop is used when you want to execute a piece of code repeatedly until

the while condition evaluates to false.

<?php

$max = 0;

echo $i = 0;

echo ",";

echo $j = 1;

echo ",";

$result=0;

while ($max < 10)

{

 $result = $i + $j;

 $i = $j;

 $j = $result;

 $max = $max + 1;

 echo $result;

 echo ",";

}

?>

Do-While Loop

The do-while loop is very similar to the while loop, with the only difference being that

the while condition is checked at the end of the first iteration. Thus, we can

guarantee that the loop code is executed at least once, irrespective of the result of

the while expression.

<?php

$handle = fopen("file.txt", "r");

if ($handle)

{

 do

 {

 $line = fgets($handle);

 // process the line content

 } while($line !== false);

}

fclose($handle);

?>

For Loop

 The for loop is used to execute a piece of code for a specific number of

times.

<?php

for ($i=1; $i<=10; ++$i)

{

 echo sprintf("The square of %d is %d.</br>", $i, $i*$i);

}

?>

For Each

The foreach loop is used to iterate over array variables.

<?php

$fruits = array('apple', 'banana', 'orange', 'grapes');

foreach ($fruits as $fruit)

{ echo $fruit; echo "
"; }

 $employee = array('name' => 'John Smith', 'age' => 30, 'profession' => 'Software

Engineer');

foreach ($employee as $key => $value)

{ echo sprintf("%s: %s</br>", $key, $value); echo "
"; }

?>

PHP Functions

• A function is a block of statements that can be used
repeatedly in a program.

• A function will not execute automatically when a page
loads.

• A function will be executed by a call to the function.

• Syntax
function functionName() {

 code to be executed;
}

Note: A function name must start with a letter or an underscore. Function
names are NOT case-sensitive.

EXAMPLE:
<?php
function writeMsg() {
 echo "Hello world!";
}
writeMsg(); // call the function
?>

PHP Function Arguments
Information can be passed to functions through arguments. An argument is just
like a variable. Arguments are specified after the function name, inside the
parentheses. You can add as many arguments as you want, just separate them
with a comma.

<?php
function familyName($fname, $year) {
 echo "$fname Refsnes. Born in $year
";
}

familyName("Hege", "1975");
familyName("Stale", "1978");
familyName("Kai Jim", "1983");
?>

Hege Refsnes. Born in 1975
Stale Refsnes. Born in 1978
Kai Jim Refsnes. Born in 1983

PHP Arrays
– An array stores multiple values in one single variable.
– Example

 <?php
 $cars = array("Volvo", "BMW", "Toyota");
 echo "I like " . $cars[0] . ", " . $cars[1] . " and " . $cars[2] . ".";
 ?>

I like Volvo, BMW and Toyota.

Get The Length of an Array - The count() Function

The count() function is used to return the length (the number of

elements) of an array:

Example
<?php
$cars = array("Volvo", "BMW", "Toyota");
echo count($cars);
?>

PHP Indexed Arrays
There are two ways to create indexed arrays:
The index can be assigned automatically (index always starts at 0), like this:
 $cars = array("Volvo", "BMW", "Toyota");
or the index can be assigned manually:

$cars[0] = "Volvo";
$cars[1] = "BMW";
$cars[2] = "Toyota";

The following example creates an indexed array named $cars, assigns three
elements to it, and then prints a text containing the array values:
Example

<?php
$cars = array("Volvo", "BMW", "Toyota");
echo "I like " . $cars[0] . ", " . $cars[1] . " and " . $cars[2] . ".";
?>

In PHP, there are three types of arrays:
Indexed arrays - Arrays with a numeric index
Associative arrays - Arrays with named keys
Multidimensional arrays - Arrays containing one or more arrays

Loop Through an Indexed Array
To loop through and print all the values of an indexed array, you could use
a for loop, like this:

Example
<?php
$cars = array("Volvo", "BMW", "Toyota");
$arrlength = count($cars);

for($x = 0; $x < $arrlength; $x++) {
 echo $cars[$x];
 echo "
";
}
?>

PHP Associative Arrays
Associative arrays are arrays that use named keys that you assign to them.
There are two ways to create an associative array:
 $age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");
or

$age['Peter'] = "35";
$age['Ben'] = "37";
$age['Joe'] = "43";

The named keys can then be used in a script:
Example

<?php
$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");
echo "Peter is " . $age['Peter'] . " years old.";
?>

Loop Through an Associative Array
To loop through and print all the values of an associative array, you could use
a foreach loop, like this:
Example

<?php
$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");

foreach($age as $x => $x_value) {
 echo "Key=" . $x . ", Value=" . $x_value;
 echo "
";
}
?>

A multidimensional array is an array containing one or more arrays.
PHP supports multidimensional arrays that are two, three, four, five, or more
levels deep. However, arrays more than three levels deep are hard to manage for
most people.

PHP - Multidimensional Arrays

Example
<?php
echo $cars[0][0].": In stock: ".$cars[0][1].", sold: ".$cars[0][2].".
";
echo $cars[1][0].": In stock: ".$cars[1][1].", sold: ".$cars[1][2].".
";
echo $cars[2][0].": In stock: ".$cars[2][1].", sold: ".$cars[2][2].".
";
echo $cars[3][0].": In stock: ".$cars[3][1].", sold: ".$cars[3][2].".
";
?>

We can also put a for loop inside another for loop to get the

elements of the $cars array (we still have to point to the two
indices):

Example

<?php
for ($row = 0; $row < 4; $row++) {
 echo "<p>Row number $row</p>";
 echo "";
 for ($col = 0; $col < 3; $col++) {
 echo "".$cars[$row][$col]."";
 }
 echo "";
}
?>

PHP Sorting Arrays

 In this chapter, we will go through the
following PHP array sort functions:

• sort() - sort arrays in ascending order

• rsort() - sort arrays in descending order

• asort() - sort associative arrays in ascending order,
according to the value

• ksort() - sort associative arrays in ascending order,
according to the key

• arsort() - sort associative arrays in descending order,
according to the value

• krsort() - sort associative arrays in descending order,
according to the key

Sort Array in Ascending Order - sort()
The following example sorts the elements of the $cars array in ascending
alphabetical order:
Example

<?php
$cars = array("Volvo", "BMW", "Toyota");
sort($cars);
?>

The following example sorts the elements of the $numbers array in ascending
numerical order:
Example

<?php
$numbers = array(4, 6, 2, 22, 11);
sort($numbers);
?>

BMW
Toyota
Volvo

2
4
6
11
22

Sort Array in Descending Order - rsort()
The following example sorts the elements of the $cars array in descending
alphabetical order:
Example

<?php
$cars = array("Volvo", "BMW", "Toyota");
rsort($cars);
?>

Sort Array (Ascending Order), According to Value - asort()
The following example sorts an associative array in ascending order, according to
the value:
Example

<?php
$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");
asort($age);
?> Key=Peter, Value=35

Key=Ben, Value=37
Key=Joe, Value=43

Volvo
Toyota
BMW

Sort Array (Ascending Order), According to Key - ksort()
The following example sorts an associative array in ascending order, according to
the key:
Example

<?php
$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");
ksort($age);
?>

Key=Ben, Value=37
Key=Joe, Value=43
Key=Peter, Value=35

Sort Array (Descending Order), According to Value - arsort()
The following example sorts an associative array in descending order, according
to the value:
Example

<?php
$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");
arsort($age);
?>

Key=Joe, Value=43
Key=Ben, Value=37
Key=Peter, Value=35

Sort Array (Descending Order), According to Key - krsort()
The following example sorts an associative array in descending order, according
to the key:
Example

<?php
$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");
krsort($age);
?>

Key=Peter, Value=35
Key=Joe, Value=43
Key=Ben, Value=37

PHP Regular Expressions
• A regular expression is a sequence of characters that forms a search pattern. When you search

for data in a text, you can use this search pattern to describe what you are searching for.

• A regular expression can be a single character, or a more complicated pattern.

• Regular expressions can be used to perform all types of text search and text replace

operations.

Syntax

• In PHP, regular expressions are strings composed of delimiters, a pattern and optional

modifiers.

 $exp = "/w3schools/i";

• In the example above, / is the delimiter, w3schools is the pattern that is being searched for,

and i is a modifier that makes the search case-insensitive.

• The delimiter can be any character that is not a letter, number, backslash or space. The most

common delimiter is the forward slash (/), but when your pattern contains forward slashes it is

convenient to choose other delimiters such as # or ~.

Regular Expression Functions
PHP provides a variety of functions that allow you to use regular expressions.

The preg_match(), preg_match_all() and preg_replace() functions are some of the most

commonly used ones:

Using preg_match()

The preg_match() function will tell you whether a string contains matches of a pattern.

<?php

$str = "Visit W3Schools";

$pattern = "/w3schools/i";

echo preg_match($pattern, $str); // Outputs 1

?>

 Using preg_match_all()

The preg_match_all() function will tell you how many matches were found for a pattern in a string.

<?php

$str = "The rain in SPAIN falls mainly on the plains.";

$pattern = "/ain/i";

echo preg_match_all($pattern, $str); // Outputs 4

?>

Using preg_replace()

The preg_replace() function will replace all of the matches of the pattern in a string with another string.

<?php

$str = "Visit Microsoft!";

$pattern = "/microsoft/i";

echo preg_replace($pattern, "W3Schools", $str); // Outputs "Visit W3Schools!"

?>

Modifier Description

i Performs a case-insensitive search

m Performs a multiline search (patterns that search for the beginning

or end of a string will match the beginning or end of each line)

u Enables correct matching of UTF-8 encoded patterns

Regular Expression Modifiers

Modifiers can change how a search is performed.

Expression Description

[abc] Find one character from the options between the brackets

[^abc] Find any character NOT between the brackets

[0-9] Find one character from the range 0 to 9

Regular Expression Patterns

Brackets are used to find a range of characters:

Metacharacter Description

| Find a match for any one of the patterns separated by | as in:

cat|dog|fish

. Find just one instance of any character

^ Finds a match as the beginning of a string as in: ^Hello

$ Finds a match at the end of the string as in: World$

\d Find a digit

\s Find a whitespace character

\b Find a match at the beginning of a word like this: \bWORD, or at the

end of a word like this: WORD\b

\uxxxx Find the Unicode character specified by the hexadecimal number

xxxx

Metacharacters

Metacharacters are characters with a special meaning:

Quantifier Description

n+ Matches any string that contains at least one n

n* Matches any string that contains zero or more occurrences of n

n? Matches any string that contains zero or one occurrences of n

n{x} Matches any string that contains a sequence of X n's

n{x,y} Matches any string that contains a sequence of X to Y n's

n{x,} Matches any string that contains a sequence of at least X n's

Quantifiers

Quantifiers define quantities:

Grouping

You can use parentheses () to apply quantifiers to entire patterns. They also can

be used to select parts of the pattern to be used as a match.

Example

Use grouping to search for the word "banana" by looking for ba followed by two

instances of na:

<?php

$str = "Apples and bananas.";

$pattern = "/ba(na){2}/i";

echo preg_match($pattern, $str); // Outputs 1

?>

PHP Form Handling

The PHP superglobals $_GET and $_POST are used to collect form-data.

PHP - A Simple HTML Form
The example below displays a simple HTML form with two input fields and a
submit button:
Example

<html>
<body>

<form action="welcome.php" method="post">
Name: <input type="text" name="name">

E-mail: <input type="text" name="email">

<input type="submit">
</form>

</body>
</html>

When the user fills out the form above and clicks the submit button, the form
data is sent for processing to a PHP file named "welcome.php". The form data is
sent with the HTTP POST method.
To display the submitted data you could simply echo all the variables. The
"welcome.php" looks like this:

<html>
<body>

Welcome <?php echo $_POST["name"]; ?>

Your email address is: <?php echo $_POST["email"]; ?>

</body>
</html>

The output could be something like this:

Welcome John
Your email address is john.doe@example.com

The same result could also be achieved using the HTTP GET method:
Example

<html>
<body>
<form action="welcome_get.php" method="get">
Name: <input type="text" name="name">

E-mail: <input type="text" name="email">

<input type="submit">
</form>
</body>
</html>

and "welcome_get.php" looks like this:
<html>
<body>
Welcome <?php echo $_GET["name"]; ?>

Your email address is: <?php echo $_GET["email"]; ?>
</body>
</html>

PHP Form Validation

The validation rules for the form above are as follows:

Field Validation Rules

Name Required. + Must only contain letters and whitespace

E-mail Required. + Must contain a valid email address (with @ and .)

Website Optional. If present, it must contain a valid URL

Comment Optional. Multi-line input field (textarea)

Gender Required. Must select one

Text Fields
The name, email, and website fields are text input elements, and the
comment field is a textarea. The HTML code looks like this:

Name: <input type="text" name="name">
E-mail: <input type="text" name="email">
Website: <input type="text" name="website">
Comment: <textarea name="comment" rows="5" cols="40"></textarea>

Radio Buttons
The gender fields are radio buttons and the HTML code looks like this:

Gender:
<input type="radio" name="gender" value="female">Female
<input type="radio" name="gender" value="male">Male
<input type="radio" name="gender" value="other">Other

The Form Element
The HTML code of the form looks like this:

<form method="post" action="<?php echo htmlspecialchars($_SERVER["PHP_SELF"]);?>"
>

When the form is submitted, the form data is sent with method="post".

What is the htmlspecialchars() function?

The htmlspecialchars() function converts special characters to HTML entities.
This means that it will replace HTML characters like < and > with < and >.
This prevents attackers from exploiting the code by injecting HTML or Javascript
code (Cross-site Scripting attacks) in forms.

What is the $_SERVER["PHP_SELF"] variable?

The $_SERVER["PHP_SELF"] is a super global variable that returns the filename
of the currently executing script.

<!DOCTYPE HTML>
<html>
<head>
</head>
<body>
<?php
// define variables and set to empty values
$name = $email = $gender = $comment = $website = "";
if ($_SERVER["REQUEST_METHOD"] == "POST") {
 $name = test_input($_POST["name"]);
 $email = test_input($_POST["email"]);
 $website = test_input($_POST["website"]);
 $comment = test_input($_POST["comment"]);
 $gender = test_input($_POST["gender"]);
}

function test_input($data) {
 $data = trim($data);
 $data = stripslashes($data);
 $data = htmlspecialchars($data);
 return $data;
}
?>

<h2>PHP Form Validation Example</h2>
<form method="post" action="<?php echohtmlspecialchars($_SERVER["PHP_SELF"]);?>">
 Name: <input type="text" name="name">

 E-mail: <input type="text" name="email">

 Website: <input type="text" name="website">

 Comment: <textarea name="comment" rows="5" cols="40"></textarea>

 Gender:
 <input type="radio" name="gender" value="female">Female
 <input type="radio" name="gender" value="male">Male
 <input type="radio" name="gender" value="other">Other

 <input type="submit" name="submit" value="Submit">
</form>

<?php
echo "<h2>Your Input:</h2>";
echo $name;
echo "
";
echo $email;
echo "
";
echo $website;
echo "
";
echo $comment;
echo "
";
echo $gender;
?>

</body>
</html>

PHP File Create/Write

PHP File Handling

PHP Create File - fopen()
The fopen() function is also used to create a file. Maybe a little confusing, but in
PHP, a file is created using the same function used to open files.
If you use fopen() on a file that does not exist, it will create it, given that the file is
opened for writing (w) or appending (a).

Example
$myfile = fopen("testfile.txt", "w")

PHP File Permissions
If you are having errors when trying to get this code to run, check that you have granted
your PHP file access to write information to the hard drive.

PHP Write to File - fwrite()
The fwrite() function is used to write to a file.
The first parameter of fwrite() contains the name of the file to write to and the second
parameter is the string to be written.
The example below writes a couple of names into a new file called "newfile.txt":

Example
<?php
$myfile = fopen("newfile.txt", "w") or die("Unable to open file!");
$txt = "John Doe\n";
fwrite($myfile, $txt);
$txt = "Jane Doe\n";
fwrite($myfile, $txt);
fclose($myfile);
?>

Notice that we wrote to the file "newfile.txt" twice. Each time we wrote to the file we
sent the string $txt that first contained "John Doe" and second contained "Jane Doe".
After we finished writing, we closed the file using the fclose() function.

If we open the "newfile.txt" file it would look like this:
John Doe
Jane Doe

PHP Overwriting
Now that "newfile.txt" contains some data we can show what happens when we
open an existing file for writing. All the existing data will be ERASED and we start
with an empty file.
In the example below we open our existing file "newfile.txt", and write some
new data into it:
Example

<?php
$myfile = fopen("newfile.txt", "w") or die("Unable to open file!");
$txt = "Mickey Mouse\n";
fwrite($myfile, $txt);
$txt = "Minnie Mouse\n";
fwrite($myfile, $txt);
fclose($myfile);
?>

If we now open the "newfile.txt" file, both John and Jane have vanished, and
only the data we just wrote is present:
Mickey Mouse
Minnie Mouse

PHP Cookies
What is a Cookie?
A cookie is often used to identify a user. A cookie is a small file that the server
embeds on the user's computer. Each time the same computer requests a page
with a browser, it will send the cookie too. With PHP, you can both create and
retrieve cookie values.

Create Cookies With PHP
A cookie is created with the setcookie() function.
Syntax
 setcookie(name, value, expire, path, domain, secure, httponly);

Only the name parameter is required. All other parameters are optional.

PHP Create/Retrieve a Cookie

The following example creates a cookie named "user" with the value "John Doe".
The cookie will expire after 30 days (86400 * 30). The "/" means that the cookie is
available in entire website (otherwise, select the directory you prefer).
We then retrieve the value of the cookie "user" (using the global variable
$_COOKIE). We also use the isset() function to find out if the cookie is set:

Example
<?php
$cookie_name = "user";
$cookie_value = "John Doe";
setcookie($cookie_name, $cookie_value, time() + (86400 * 30), "/"); // 86400 =
1 day
?>
<html>
<body>
<?php
if(!isset($_COOKIE[$cookie_name])) {
 echo "Cookie named '" . $cookie_name . "' is not set!";
} else {
 echo "Cookie '" . $cookie_name . "' is set!
";
 echo "Value is: " . $_COOKIE[$cookie_name];
}
?>
</body>
</html>

Cookie 'user' is set!
Value is: Alex Porter
Note: You might have to reload the page to see
the value of the cookie.

Modify a Cookie Value

To modify a cookie, just set (again) the cookie using
the setcookie() function:

Example
<?php
$cookie_name = "user";
$cookie_value = "Alex Porter";
setcookie($cookie_name, $cookie_value, time() + (86400 * 30), "/");
?>
<html>
<body>

<?php
if(!isset($_COOKIE[$cookie_name])) {
 echo "Cookie named '" . $cookie_name . "' is not set!";
} else {
 echo "Cookie '" . $cookie_name . "' is set!
";
 echo "Value is: " . $_COOKIE[$cookie_name];
}
?>

</body>
</html>

Cookie 'user' is set!
Value is: John Doe
Note: You might have to reload the page to see
the new value of the cookie.

Delete a Cookie

To delete a cookie, use the setcookie() function with an expiration date

in the past:

Example

<?php
// set the expiration date to one hour ago
setcookie("user", "", time() - 3600);
?>
<html>
<body>

<?php
echo "Cookie 'user' is deleted.";
?>

</body>
</html> Cookie 'user' is deleted.

Check if Cookies are Enabled

The following example creates a small script that checks whether
cookies are enabled. First, try to create a test cookie with
the setcookie() function, then count the $_COOKIE array variable:

Example
<?php
setcookie("test_cookie", "test", time() + 3600, '/');
?>
<html>
<body>

<?php
if(count($_COOKIE) > 0) {
 echo "Cookies are enabled.";
} else {
 echo "Cookies are disabled.";
}
?>

</body>
</html>

Cookies are enabled.

PHP Sessions

A session is a way to store information (in variables) to be used across multiple
pages. When you work with an application, you open it, do some changes, and
then you close it. This is much like a Session. The computer knows who you are.
It knows when you start the application and when you end. But on the internet
there is one problem: the web server does not know who you are or what you
do, because the HTTP address doesn't maintain state.

Start a PHP Session
A session is started with the session_start() function.
Session variables are set with the PHP global variable: $_SESSION.
Now, let's create a new page called "demo_session1.php". In this page, we start a
new PHP session and set some session variables:

Example
<?php
// Start the session
session_start();
?>
<!DOCTYPE html>
<html>
<body>

<?php
// Set session variables
$_SESSION["favcolor"] = "green";
$_SESSION["favanimal"] = "cat";
echo "Session variables are set.";
?>

</body>
</html>

Session variables are set.

Note: The session_start() function must be the very first thing in your document.
Before any HTML tags.

Get PHP Session Variable Values
Next, we create another page called "demo_session2.php". From this page, we will access
the session information we set on the first page ("demo_session1.php").
Notice that session variables are not passed individually to each new page, instead they are
retrieved from the session we open at the beginning of each page (session_start()).
Also notice that all session variable values are stored in the global $_SESSION variable:

Example
<?php
session_start();
?>
<!DOCTYPE html>
<html>
<body>
<?php
// Echo session variables that were set on
previous page
echo "Favorite color is
" . $_SESSION["favcolor"] . ".
";
echo "Favorite animal is
" . $_SESSION["favanimal"] . ".";
?>
</body>
</html>

Favorite color is green.
Favorite animal is cat.

Modify a PHP Session Variable
To change a session variable, just overwrite it:
Example
<?php
session_start();
?>
<!DOCTYPE html>
<html>
<body>

<?php
// to change a session variable, just overwrite
it
$_SESSION["favcolor"] = "yellow";
print_r($_SESSION);
?>

</body>
</html>

Array ([favcolor] => yellow [favanimal] => cat)

Destroy a PHP Session
To remove all global session variables and destroy the session,
use session_unset() and session_destroy():
Example
<?php
session_start();
?>
<!DOCTYPE html>
<html>
<body>

<?php
// remove all session variables
session_unset();

// destroy the session
session_destroy();
?>

</body>
</html>

All session variables are now removed, and the
session is destroyed.

Database Connectivity

PHP MySQL Database

• With PHP, you can connect to and manipulate databases.

• MySQL is the most popular database system used with PHP.

What is MySQL?

• MySQL is a database system used on the web

• MySQL is a database system that runs on a server

• MySQL is ideal for both small and large applications

• MySQL is very fast, reliable, and easy to use

• MySQL uses standard SQL

• MySQL compiles on a number of platforms

• MySQL is free to download and use

• MySQL is developed, distributed, and supported by Oracle Corporation

The data in a MySQL database are stored in tables. A table is a collection of related
data, and it consists of columns and rows.Databases are useful for storing information
categorically.

PHP + MySQL Database System

PHP combined with MySQL are cross-platform (you can develop in Windows and

serve on a Unix platform)

Database Queries

A query is a question or a request.

We can query a database for specific information and have a recordset returned.

Look at the following query (using standard SQL):

 SELECT LastName FROM Employees

The query above selects all the data in the "LastName" column from the

"Employees" table.

Download PHP Server with MySQL

Open a Connection to MySQL

Before we can access data in the MySQL database, we need to be able to

connect to the server:

Example (MySQLi Object-Oriented)

 <?php

 $servername = "localhost";

 $username = "username";

 $password = "password";

 // Create connection

 $conn = new mysqli($servername, $username, $password);

 // Check connection

 if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

 }

 echo "Connected successfully";

 ?>

Close the Connection

The connection will be closed automatically when the script ends. To close the

connection before, use the following:

 $conn->close();

Create a MySQL Database

The CREATE DATABASE statement is used to create a database in MySQL.

The following example create a database named "myDB":

 <?php

 $servername = "localhost";

 $username = "username";

 $password = "password";

 // Create connection

 $conn = new mysqli($servername, $username, $password);

 // Check connection

 if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

 }

 // Create database

 $sql = "CREATE DATABASE myDB";

 if ($conn->query($sql) === TRUE) {

 echo "Database created successfully";

 } else {

 echo "Error creating database: " . $conn->error;

 }

 $conn->close();

 ?>

How to Connect Mysql with PHP

When many developers refer to a database, they are usually referring to

MySQL, a very popular DBMS that powers projects of all sizes. The USP of

MySQL is its ability to handle huge volumes of data without breaking a sweat.

In this article I will discuss how to connect MySQL Database on different

servers and also give an overview of connecting Database using PDO.

 Connect MySQL using Localhost Server

 Connect MySQL using Cloudways Server

 Connect MySQL using PDO

 Connect MySQL using Remote MySQL

Create MySQL Database at the Localhost

First, let me tell you what PHPMyAdmin is. It is a control panel from where you

can manage your database that you have created. Open your browser and go to

localhost/PHPMyAdmin or click “Admin” in XAMPP UI.

When you first installed XAMPP, it only created the username for it to be

accessed, you now have to add a password to it by yourself. For this, you have

to go to User account where the user is same as the one shown in this picture:

Now click Edit privileges and go to Change Admin password, type your

password there and save it. Remember this password as it will be use to

connect to your Database.

Note: It is not necessary to change password to access databases on local host. It

is a good practice and that is why we have used a password.

Create Database

Now return to the homepage of phpmyadmin. Click New button to create a new

database.

In the new window, name your database as per your need, I am naming it

“practice”. Now select Collation as utf8_general_ci, as we are using it for

learning purposes and it will handle all of our queries and data that will be

covered in this tutorial series. Now click on Create and your database will be

created.

The newly created database will be empty now, as there are no tables in it. I will be

covering that in the upcoming series where we will learn how to create tables and insert

data in it. In this tutorial, we are going to connect this database to a localhost using PHP.

Create a Folder in htdocs

Now, locate the folder where you installed XAMPP and open htdocs folder

(usually c:/xampp).

Create a new folder inside c:/xampp/htdocs/ and name it “practice” we will

place web files in this folder.

Why we have created folder in htdocs?

XAMPP uses folders in htdocs to execute and run your PHP sites.

Note: If your using WAMP, then add your practice folder in c:/wamp/www

folder.

Create Database Connection File In PHP

Create a new php file and name it db_connnection.php and save it. Why am I creating a

separate database connection file? Because if you have created multiple files in which you

want to insert data or select data from the databases, you don’t need to write the code for

database connection every time. You just have to include it by using PHP custom

function include (include ‘connection.php’) on the top of your code and call its function

and use it. It also helps when you are moving your project location from one PC to another

and you have to change the values on the single file and all the changes will be applied to

all the other files automatically. Write the following code in your db_connection file.

<?php

function OpenCon()

{

$dbhost = “localhost”;

$dbuser = “root”;

$dbpass = “1234”;

$db = “example”;

$conn = new mysqli($dbhost, $dbuser, $dbpass,$db) or die(“Connect failed: %s\n”. $conn

-> error);

return $conn;

}

function CloseCon($conn)

{

$conn -> close();

}

?>

Here is the explanation of the variable that we have used in our db_connection file:

$dbhost will be the host where your server is running it is usually localhost.

$dbuser will be the username i.e. root and $dbpass will be the password which is the

same that you used to access your phpmyadmin.

$dbname will be the name of your database which we have created in this tutorial.

Create new php file to check your database connection

Create a new php file to connect to your database. Name it index.php and add this code

in this file.

<?php

include ‘db_connection.php’;

$conn = OpenCon();

echo “Connected Successfully”;

CloseCon($conn);

?>

Run it!

Now open your browser and goto localhost/practice/index.php and you should see this

screen:

Confirmation Message

Congratulations! You’ve successfully connected your database with your

localhost! If you are not able to see this screen, then check if you have done

everything right in your db_connection.php file.

References
• https://www.w3schools.com/PHP/DEfaULT.asP

• https://www.tutorialspoint.com/php/index.ht
m

• https://www.tutorialrepublic.com/php-
tutorial/

• https://www.javatpoint.com/php-tutorial

• https://www.phptpoint.com/php-tutorial/

https://www.w3schools.com/PHP/DEfaULT.asP
https://www.tutorialspoint.com/php/index.htm
https://www.tutorialspoint.com/php/index.htm
https://www.tutorialrepublic.com/php-tutorial/
https://www.tutorialrepublic.com/php-tutorial/
https://www.tutorialrepublic.com/php-tutorial/
https://www.javatpoint.com/php-tutorial
https://www.javatpoint.com/php-tutorial
https://www.javatpoint.com/php-tutorial
https://www.phptpoint.com/php-tutorial/
https://www.phptpoint.com/php-tutorial/
https://www.phptpoint.com/php-tutorial/

CONTENTS

RAILS - Overview of Rails- Document Requests-
Processing Forms- Rails Application with
Databases – Layouts

AJAX - Ajax Overview of Ajax – Basics of Ajax –
Rails with Ajax.

Rails - Overview
• Rails is a web application development framework written in the Ruby programming

language. It is designed to make programming web applications easier by making

assumptions about what every developer needs to get started. It allows you to write less code

while accomplishing more than many other languages and frameworks.

• Rails combines the Ruby programming language with HTML, CSS, and JavaScript to create

a web application that runs on a web server. Because it runs on a web server, Rails is

considered a server-side, or “back end,” web application development platform (the web

browser is the “front end”).

• The Rails philosophy includes two major guiding principles:

– Don't Repeat Yourself: DRY is a principle of software development which states that

"Every piece of knowledge must have a single, unambiguous, authoritative

representation within a system". By not writing the same information over and over

again, our code is more maintainable, more extensible and less buggy.

– Convention Over Configuration: Rails has opinions about the best way to do many

things in a web application, and defaults to this set of conventions, rather than require

that you specify minutiae through endless configuration files.

What is Rails?
• an application framework
 › full stack: web server, actions, database
• a programming environment
 › eg, rake (like make), unit testing
• an open-source community
 › many plugins

History of Rails
• genesis in Basecamp

 › project management tool by 37signals
• release
 › open source in 2004
 › shipped with OS X 10.5 in 2007
 › Rails 3.1 in 2011, merging with Merb

Ruby on Rails creation
Ruby on Rails was created by David Heinemeier Hansson (DHH). He was working at
37signals (now Basecamp) company to create a project management application in Ruby.
To help speed along the process, he created a custom web framework Ruby on Rails. It is
also called Rails.

Ruby on Rails Features

 Rails 5 was launched on 18th September 2015 by David Heinemeier
Hansson in Atlanta. Some new features were implemented in Rails 5 version.
Some features are listed below:

Symbol garbage collector
Module #prepend
Keyword arguments
Action Mailer
Action view
Turbolinks
Action cable
Actionpack Assertions
Rails API
Render from anywhere
Rake command
Customized library
AJAX library

Symbol Garbage Collector
Passing symbols opens the possibility of several attacks in your system. The
symbol garbage collector collects the symbols which prevents your system from
several attacks.

Module #prepend
It allows you to insert a module in front of the class it was prepended.

Keyword Arguments
It supports keyword arguments which helps to reduce memory consumption by
Rails application.

Action Mailer
New methods deliver_now or deliver_later are used instead of #deliver and
#deliver!.

Action View
Helper methods like content_tag_for and div_for were removed from the core
and moved out to a separate gem.

Turbolinks
Sometimes web pages reloads very slow because it loads full page from the
server. Turbolinks 3 reloads only the content of the body, it doesn't reloads the
whole page.

Action Cable
It is a framework which is used to extend Rails via Websockets to add some
functionality. It very smoothly integrates Websockets with the rest of the Rails
application. It allows you to easily add some real time features to your app.

ActionPack Assertions
The assertions assert_template and assigns() are deprecated and moved into its
own gem.

Rails API
It allows you to generate API and cleans all the middleware which is not
necessary for an application.

Render From Anywhere
Earlier we used gem render_anywhere to render views outside controller. In
Rails 5, you can render your views from anywhere.

Rake Command
Rails 5 provides you a feature which allows you to restart all your apps with
the rake restart command.

Customized URL
Search engine friendly URLs can be developed in Rails.

AJAX Library
Rails provide you an extensive library of AJAX functions. The associated java
scripting required for AJAX gets generated automatically.

Rails Scripts

• Rails provides us some excellent tools that are
used to develop Rails application. These tools
are packaged as scripts from command line.

• Following are the most useful Rails scripts
used in Rails application:

– Rails Console

– WEBrick Web Server

– Generators

– Migrations

Rails Console
The Rails console is as command line utility which runs Rails application from the
command line. The Rails console is an extension of Ruby irb. It provides all the
features of irb along with the ability to auto-load Rails application environment,
including all its classes and components. It helps you to walk through your
application step-by-step.

WEBrick Web server
Rails is configured to automatically use WEBrick server. This server is written in
pure Ruby and supports almost all platforms like Windows, Mac or Unix.
Alternatively, if you have Mongrel or light tpd server installed in your system,
Rails uses either of those servers.
All the three Rails servers feature automatic reloading of code. It means, when
you change your source code, you do not need to restart the server.

Generators
The Rails include code generation scripts, which are used to automatically
generate model and controller classes for an application. Code generation
increases your productivity when developing Web applications. By running
generator command, skeleton files for all your model and controller classes will
be generated. It also generates, database migration files for each model it
generates.

Migrations
Migrations bring Rails DRY feature to life. It is a pure Ruby code that define the
structure of a database. You don't have to use SQL to write your code while
using migration.
The changes you make to your database schema is isolated in a separate
migration file, which has a method to implement or reverse the change.

Ruby on Rails Directory Structure

• On creating a Rails application, the entire Rails
directory structure is created. We will explain
Rails 5 directory structure here.

• The jtp directory (shown below) has a number
of auto-generated files and folders that
comprises the structure of Rails application.

Ruby on Rails - Framework
• A framework is a program, set of programs, and/or code library that writes

most of your application for you. When you use a framework, your job is
to write the parts of the application that make it do the specific things you
want.

• When you set out to write a Rails application, leaving aside the
configuration and other housekeeping chores, you have to perform three
primary tasks −

• Describe and model your application's domain − The domain is the
universe of your application. The domain may be a music store, a
university, a dating service, an address book, or a hardware inventory. So
here you have to figure out what's in it, what entities exist in this universe
and how the items in it relate to each other. This is equivalent to modeling
a database structure to keep the entities and their relationship.

• Specify what can happen in this domain − The domain model is static; you
have to make it dynamic. Addresses can be added to an address book.
Musical scores can be purchased from music stores. Users can log in to a
dating service. Students can register for classes at a university. You need to
identify all the possible scenarios or actions that the elements of your
domain can participate in.

• Choose and design the publicly available views of the domain − At this
point, you can start thinking in Web-browser terms. Once you've decided
that your domain has students, and that they can register for classes, you
can envision a welcome page, a registration page, and a confirmation page,
etc. Each of these pages, or views, shows the user how things stand at a
certain point.

Based on the above three tasks, Ruby on Rails deals with a
Model/View/Controller (MVC) framework.

Ruby on Rails MVC Framework

The Model View Controller principle divides the work of an application into
three separate but closely cooperative subsystems.

 Model (ActiveRecord)

– It maintains the relationship between the objects and the database and
handles validation, association, transactions, and more.

– This subsystem is implemented in Active Record library, which provides
an interface and binding between the tables in a relational database and
the Ruby program code that manipulates database records. Ruby
method names are automatically generated from the field names of
database tables.

 View (ActionView)
– It is a presentation of data in a particular format, triggered by

a controller's decision to present the data. They are script-
based template systems like JSP, ASP, PHP, and very easy to
integrate with AJAX technology.

– This subsystem is implemented in Action View library, which
is an Embedded Ruby (ERb) based system for defining
presentation templates for data presentation. Every Web
connection to a Rails application results in the displaying of a
view.

 Controller (ActionController)
– The facility within the application that directs traffic, on the

one hand, querying the models for specific data, and on the
other hand, organizing that data (searching, sorting,
messaging it) into a form that fits the needs of a given view.

– This subsystem is implemented in ActionController, which is a
data broker sitting between ActiveRecord (the database
interface) and ActionView (the presentation engine).

Pictorial Representation of MVC
Framework

• When you use the Rails helper script to create your
application, it creates the entire directory structure
for the application. Rails knows where to find things
it needs within this structure, so you don't have to
provide any input.

• Here is a top-level view of a directory tree created
by the helper script at the time of application
creation. Except for minor changes between
releases, every Rails project will have the same
structure, with the same naming conventions. This
consistency gives you a tremendous advantage; you
can quickly move between Rails projects without
relearning the project's organization.

• Active Record

– Data structures are represented by a hierarchy of
classes. Data is mostly stored in relational database
tables. There is an essential mismatch between your
program's object view and database's relational data
view. To remove this mismatch, many attempts have
been tried. One way to resolve this mismatch was
through the use of Object-relational-mapping (ORM)
tools. ORM is the mapping of relational database
tables to object-oriented classes.

– A perfect ORM hides the details of a database's
relational data behind the object hierarchy. In Rails,
ORM is implemented by Active Record which is one of
the most important components of the Rails library.

• An ORM provides a mapping layer between how a database
handles its data and how an object-oriented application
handles its data. It maps database tables to classes,
database table rows to objects, and database tables
columns to object attributes. Active Record mainly carries
out the mapping process for you. While using Active
Record, you have to no longer deal with database
constructs like tables, rows or columns. Your application
only deals with classes, attributes and objects.

• Active Record is based on a design pattern
created by Martin Fowler. From this design
pattern only, the Active Record got its name. Its
code works very well even with less number of
lines. It is quite easy to use. Active Record Rails
application does not need any configuration at
all, if proper naming schemes is followed in your
database and classes.

• There is one more feature of Active Record that
makes your work easy, the implementation of a
domain-specific-language (DSL). A DSL is a
programming language intended to use in a
specific problem domain. It allows you to use
dynamically generated methods, like to retrieve a
record, method find_by_first_name is used.

Active Record Basics

• Some of the basics of Active Record are classes, objects and
naming conventions.

• Active Record Classes and Objects
– Each table in a database is generally represented by a class that

extends Active Record base class. By extending Active Record
base classes, model objects inherit a lot of functionalities.

– While using Active Records, you don't have to set up any
database connections. It manages all the database connections
for an appication. It adds attributes to your class for each of the
columns in the database.

• Active Record naming conventions
– Active Record uses the CoC (convention over configuration)

principle. On following naming convention, you can take
advantage of many dynamic features of Active Record without
any configuration.

Class and Database

• Database table should be named in the plural form and in
lowercase of your model classes. For example, if a model
class name is Student, then corresponding table name will
be students. With the help of this convention, Rails will
automatically find the corresponding table to your model
class without any configuration code. It even supports
plural nouns such as 'people' as the plural of 'person'.

• Rails provides a facility where you can add plurals for a
model. To define your own pluralization, add code to the
config/environment.rb using Inflector.

• In some case, if you don't want to name your database in
the plural form, Rails can be configured with singular-
named database tables by adding following line to the
config/environment.rb :

 ActiveRecord::Base.pluralize_table_names = false

Ruby on Rails Migrations

• Migrations are a way to alter database schema over time in
a consistent and organized manner. They use a Ruby DSL
through which there is no need to write SQL by hand.

• SQL fragments can be edited by hand but then you have to
tell other developers about the changes you made and
then run them. You need to keep track of changes that
need to be run against production machines next time you
deploy.

• Each migration is a new version of the database. Each
migration modifies database by adding or removing tables,
columnns or entries. Active record will update your
db/schema.rb file to match up-to-date structure of your
database.

Purpose of Migrations
• It is important to know the purpose of migration

before using it. Database is used in all web
applications.

• Generally, a SQL statement is used to run
database queries to create, modify, read or
delete columns of a database.

• Migration file contains a specific set of
instructions for how a database should be
created. When this file is run, Rails will make
changes in the database automatically. Gradually,
the migration file will act as a versioned history of
how database has changed. It implies that you
will be able to recreate the database from the set
of instructions file.

Creating Migration file

Syntax to create a migration file:

 application_dir> rails generate migration table_name

• This will create a file with the name
db/migrate/001_table_name.rb. A migration file
contains basic data structure of a database table.

• It is advisable that before running the migration
generator, clean the existing migrations generated
by model generators.

Example:

• Let us create a migration called java in the
application tutorials.

 rails generate migration java

Editing Code

• Go to db/migrate directory in the tutorials application.
Write the following code in the present file 001_java.rb,

 class Java < ActiveRecord::Migration

 def self.up
 create_table :java do |t|
 t.column :title, :string, :limit => 32, :null => false
 t.column :fee, :float
 t.column :duration, :integer
 t.column :index, :string
 t.column :created_at, :timestamp
 end
 end

 def self.down
 drop_table :java
 end
end

• The method self.up is used during migrating to a new
version and self.down is used to roll back any
changes if needed.

Run Migration
• After creating all the required migration files you

need to execute them. To execute migration file
against database, run the following code:
 rake db:migrate

• It will create a "schema_info" table if doesn't exist. It
tracks the current version of the database.

• If new migration will be created then that will be a
new version for the database.

Rails Layout

• In Rails, layouts are pieces that fit together (for
example header, footer, menus, etc) to make a
complete view. An application may have as many
layouts as you want. Rails use convention over
configuration to automatically pair up layouts with
respective controllers having same name.

• Rails layouts basically work on Don't Repeat Yourself
principle (DRY).

• In Rails, layouts are enabled by default. Whenever you
generate a new Rails application, a layout is
automatically generated for you in app/views/layouts.

• First we need to define a layout template and then
define the path for controller to know that layout
exists.

Creating Responses
• There are three ways to create an HTTP response from the

controller's point of view:
• Call render to create a full response to send back to the

browser
• Call redirect_to to send an HTTP redirect status code to the

browser
• Call head to create a response to end back to the browser
• Importance of yield statement
• The yield statement in Rails decides where to render the

content for the action in layout. If there is no yield
statement in the layout, the layout file itself will be
rendered but additional content into the action templates
will not be correctly placed within the layout.

• Hence, a yield statement is necessary to add in a layout file.
 <%= yield %>

Relation between Rails Layouts and Templates
• When a request is made in an application, following

process occur:
• First of all, Rails find a template for corresponding action to

render method in your controllers action.
• Then finds correct layout to use.
• It uses action template to generate a content specific to the

action.
• Finally it looks for the layout's yield statement and insert

action's template here.
Finding correct layout
• Rails searches for the layout with same name in the

app/layouts directory as the controllers name.
• For example, if you have a controller called GioController,

then rails will search for layouts/gio.html.erb layout. It no
layout with the same name is present, then it will use the
default layout app/views/layouts/appplication.html.erb

Rails Filters

• Rails filters are methods that run before or
after a controller's action method is executed.
They are helpful when you want to ensure
that a given block of code runs with whatever
action method is called.

• Rails support three types of filter methods:

– Before filters

– After filters

– Around filters

Before Filters

• Rails before filters are executed before the code in
action controller is executed. The before filters are
defined at the top of a controller class that calls them.
To set it up, you need to call before_filter method.

class UserController < ApplicationController
before_filter :verify_password
def verify_password
...
end
end

In this example, method verify_password is applied
as a before filter. Before any action method will be
called, verify_password method is called.

After Filters
• Rails after filters are executed after the code in action

controller is executed. Just like before filters, after
filters are also defined at the top of a controller class
that calls them. To set it up, you need to call after_filter
method.

class PhotoController < ApplicationController
after_filter :resize_photo
def resize_photo
...
end
end

In this example, method resize_photo is applied as
an after filter.

Around Filters
• Rails around filters contain codes that are executed both before and

after controller's code is executed. They are generally used when
you need both before and after filter. Its implementation is little bit
different and more complex than other two filters. It is generally
defined by a common class which contains both before and after
methods.

class ActionLogger
def before(controller)
@start_time = Time.new
end
def after(controller)
@end_time = Time.now
@elapsed_time = @end_time.to_f -
 @start_time.to_f
@action = controller.action_name
next save this logging detail to a file or datab
ase
table
end
end

In the ActionLogger class,
before method captures
time an action is started
and after method captures
time an action completes,
the elapsed time.
Let us see how
ActionLogger class works as
an around filter. In your
controller class, simply add
around_filter method and
pass an instance of
ActionLogger as a
parameter.

Protecting Filter Methods
• Any method in your controller class can be routed from a browser.

It is done through its ability to protect methods within a class. All
Ruby methods have one of these protection levels.

• Public: These methods are accessible from any external class or
method that uses the same class in which they are defined.

• Protected: These methods are accessible only within the class in
which they are defined and in the classes that inherit from the class
in which they are defined.

• Private: These methods are only accessible within the class in
which they are defined.

• By default, methods are always public. Means any external class or
method can access them. To define protection level, you can
declare methods by putting a protected or private keyword before
the methods that you want to protect.

class PhotoController < ApplicationController
around_filter ActionLogger.new
end

• In the above example, there is one protected method and two private
methods. In the User class, the user_identity method is made a private
method. Only other methods within User class can call it. The sign_in
method can be called only by methods within User class or classes that
are inherited from User class.

class User
def new_user
...
end
protected
def sign_in
...
end
private
def user_identity
...
end
def assign_sidekick
...
end
end

Testing in Rails

• Rails test is very simple to write and run for your
application. As Rails script generates models and
controllers, in the same way test files are also
generated. Rails also uses a separate database for
testing. Test database in an application is rebuilt
each time the application's test run, and hence
you always have a consistent database when your
tests are run.

• Rails uses Ruby Test::Unit testing library. Rails
application test is usually run using Rake utility.

What is AJAX?
• AJAX is an acronym for Asynchronous JavaScript And XML.

• AJAX is not a programming language. but simply a development technique for

creating interactive web applications.

• The technology uses JavaScript to send and receive data between a web browser
and a web server.

• The AJAX technique makes web pages more responsive by exchanging data with a
server behind the scenes, instead of reloading an entire web page each time a
user makes a change.

• With AJAX, web applications can be faster, more interactive, and more user
friendly.

• AJAX uses an XMLHttpRequest object to send data to a web server, and XML is
commonly used as the format for receiving server data, although any format
including and plain text can be used.

• AJAX allows web pages to be updated asynchronously by exchanging data with a
web server behind the scenes. This means that it is possible to update parts of a
web page, without reloading the whole page.

Introduction to AJAX
• Conventional HTML + JavaScript

– Functions of JavaScript:
• (Form) checking

• Event handling

• Dynamic presentation and/or content creation
– Where is the data on which dynamic creation is based

» Values of variables that are part of JavaScript code.

» Values of HTML/form elements

• AJAX: HTML + JavaScript + XML
– Dynamic presentation and/or content creation

• Where is the data on which dynamic creation is based
– Values of variables that are part of JavaScript code.

– Values of HTML/form elements

– Get from the server by the JavaScript code.

» Using standard HTTP Get/Post Request/Response protocol

– The returned data in XML

» Data only without presentation – JavaScript code has built in presentation

» Data + presentation with (inline CSS, XSLT, HTML …)

– Bottom line
• No data sent to the client browser more than once from the server

• One page with multiple server accesses (compared to one page one access)

• Extreme case: One AJAX page for interactions of the entire web application

How to AJAX
• Create XMLHttpRequest object

– IE

 xmlHttp=new ActiveXObject("Microsoft.XMLHTTP")
– Mozilla

 xmlHttp=new XMLHttpRequest()

• Define response handler function

 function responseHandler() {

 if (xmlHttp.readyState==4 || xmlHttp.readyState=="complete") {
 textResponse =xmlHttp.responseText ;

 xmlResponse = xmlHttp.responseXML }
 }

• Binding XMLHttpRequest handler function to XMLHttpRequest object
– IE

 xmlHttp.onreadystatechange=responseHandler
– Mozilla

 xmlHttp.onload=responseHandler

• Connect to the server

 xmlHttp.open(method, url, asyncFlag, userid, password)
• Send request to the server

 xmlHttp.send(requestMessageBody)

AJAX Application Example

• Online test
– Many multiple choice questions

– All questions are displayed on one page

– After the user answers one question, the correct answer and explanation about
why the user answer is wrong is shown on the page

– For all already-answered questions, their correct answers and explanations are
always shown on the page

• Pure sever-side solution using conventional web application
– For each question answer submission, the whole page with most of repeated data

sent to the browser

• Pure client-side solution using conventional JavaScript
– The user can read JavaScript source code to view what is correct answer

– Large amount of explanation data will be carried by the JavaScript code

• AJAX solution
– After the user answers a question, use XmlHttpRequest to ask the server to send

the correct answer and explanation.

– Display the correct answer and explanation received from the server

How AJAX Works

1. An event occurs in a web page (the page is loaded, a button is

clicked)

2. An XMLHttpRequest object is created by JavaScript

3. The XMLHttpRequest object sends a request to a web server

4. The server processes the request

5. The server sends a response back to the web page

6. The response is read by JavaScript

7. Proper action (like page update) is performed by JavaScript

Based on Internet Standards

• XHTML/HTML and CSS

– To display the data

• JavaScript (XMLHttpRequest calls)

– To exchange data asynchronously with the server

• XML

– To tranfer the data

• DOM (document object model)

– To navigate the hierarchy of X/HTML elements

X/HTML and CSS

• Elements are identified in the X/HTML code that
will be worked with by the JavaScript

• These provide the visual layout and structure
for how the XML data will be displayed
(performed on the client machine)

• CSS provides the styling

JavaScript/XMLHttpRequest

• Provides connection between the X/HTML
element(s) and how they behave

• Sends XMLHttpRequests on demand when the
user creates events

• Handles events both from the user and the
replies from the server

• Can parse XML data and map it to data objects
needed in the JavaScript

• Updates the X/HTML elements as needed

XML

• Provides format for data transfer between the
JavaScript and the server

DOM

• Two DOMs involved

– One for the elements in the X/HTML

– One for the elements in the XML file

• Defines the logical structure of the documents

• Can be used by any programming language

• Used for navigating around the tree structure

• Provides quick access for changing/modifying
elements

XMLHttpRequest

• Object used for fetching/returning data

• Can be synchronous or asynchronous—AJAX uses it
asynchronously

• Allows the web pages to get more data from the
server incrementally and asynchronously while the
user is doing other things

• Examples are Gmail, which continuously asks the
server for new mail and Google Maps, which
update only the new parts of a map when the user
mouses or clicks on a new point

Advantages

• Interactivity
– Asynchronous transmission of data back and forth

• Bandwidth usage
– Smaller payload

• Encourages modularization
– Function, data sources, structure and style

• Allows non-related technologies to work
together (server-side languages, databases,
client-side languages, etc.)

Disadvantages

• Difficult to debug because it is asynchronous

• Search engines can’t index/optimize

• Browsers handle XHRs differently—Internet
Explorer didn’t have a native one till version 7
(presently on version 8)

• Back button and bookmarks may not work as
expected

• May experience response time/latency
problems if there are many frequent updates

Uses for AJAX

• Real-time form data validation when server-side
information is required

• Autocompletion (again when server-side info
from a database, for example, is needed)

• Sophisticated user interface controls and effects
such as progress bars

• Getting current data without reloading a full
page

AJAX - The XMLHttpRequest Object

The keystone of AJAX is the XMLHttpRequest object.

The XMLHttpRequest Object

– All modern browsers support the XMLHttpRequest object.

– The XMLHttpRequest object can be used to exchange data with a web server behind the
scenes. This means that it is possible to update parts of a web page, without reloading the
whole page.

Create an XMLHttpRequest Object

– All modern browsers (Chrome, Firefox, IE7+, Edge, Safari, Opera) have a built-
in XMLHttpRequest object.

– Syntax for creating an XMLHttpRequest object:

 variable = new XMLHttpRequest();

Example
if (window.XMLHttpRequest) {
 // code for modern browsers
 xmlhttp = new XMLHttpRequest();
 } else {
 // code for old IE browsers
 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}

Method Description

new XMLHttpRequest() Creates a new XMLHttpRequest object

abort() Cancels the current request

getAllResponseHeaders() Returns header information

getResponseHeader() Returns specific header information

open(method, url, async, user,
psw)

Specifies the request

method: the request type GET or POST
url: the file location
async: true (asynchronous) or false (synchronous)
user: optional user name
psw: optional password

send() Sends the request to the server
Used for GET requests

send(string) Sends the request to the server.
Used for POST requests

setRequestHeader() Adds a label/value pair to the header to be sent

XMLHttpRequest Object Methods

Property Description

onreadystatechange Defines a function to be called when the readyState property
changes

readyState Holds the status of the XMLHttpRequest.
0: request not initialized
1: server connection established
2: request received
3: processing request
4: request finished and response is ready

responseText Returns the response data as a string

responseXML Returns the response data as XML data

status Returns the status-number of a request
200: "OK"
403: "Forbidden"
404: "Not Found"
For a complete list go to the Http Messages Reference

statusText Returns the status-text (e.g. "OK" or "Not Found")

XMLHttpRequest Object Properties

https://www.w3schools.com/tags/ref_httpmessages.asp

AJAX - Send a Request To a Server

The XMLHttpRequest object is used to exchange

data with a server.

Send a Request To a Server
• To send a request to a server, we use the open()

and send() methods of
the XMLHttpRequest object:

xhttp.open("GET", "ajax_info.txt", true);
xhttp.send();

AJAX - Server Response

• The onreadystatechange Property

• The readyState property holds the status of
the XMLHttpRequest.

• The onreadystatechange property defines a
function to be executed when the readyState
changes.

• The status property and
the statusText property holds the status of the
XMLHttpRequest object.

AJAX XML Example

AJAX can be used for interactive communication with an XML file.

Example Explained
When a user clicks on the "Get CD info" button above, the loadDoc() function is executed.
The loadDoc() function creates an XMLHttpRequest object, adds the function to be executed
when the server response is ready, and sends the request off to the server.
When the server response is ready, an HTML table is built, nodes (elements) are extracted
from the XML file, and it finally updates the element "demo" with the HTML table filled with
XML data:

function loadDoc() {
 var xhttp = new XMLHttpRequest();
 xhttp.onreadystatechange = function() {
 if (this.readyState == 4 && this.status == 200) {
 myFunction(this);
 }
 };
 xhttp.open("GET", "cd_catalog.xml", true);
 xhttp.send();
}

function myFunction(xml) {
 var i;
 var xmlDoc = xml.responseXML;
 var table="<tr><th>Artist</th><th>Title</th></tr>";
 var x = xmlDoc.getElementsByTagName("CD");
 for (i = 0; i <x.length; i++) {
 table += "<tr><td>" +
 x[i].getElementsByTagName("ARTIST")[0].childNodes[0].nodeValue
 +
 "</td><td>" +
 x[i].getElementsByTagName("TITLE")[0].childNodes[0].nodeValue
+
 "</td></tr>";
 }
 document.getElementById("demo").innerHTML = table;
}

AJAX PHP Example

<html> <body>
<p>Start typing a name in the input field below:</p>
<p>Suggestions: </p>
 <form>
 First name: <input type="text" onkeyup="showHint(this.value)">
 </form>
 <script>
 function showHint(str) {
 if (str.length == 0) {
 document.getElementById("txtHint").innerHTML = "";
 return; } else {
 var xmlhttp = new XMLHttpRequest();
 xmlhttp.onreadystatechange = function() {
 if (this.readyState == 4 && this.status == 200) {

 document.getElementById("txtHint").innerHTML = this.responseText;
 } };
 xmlhttp.open("GET", "gethint.php?q=" + str, true);
 xmlhttp.send();
 } }
 </script>
</body> </html>

AJAX Database Example

AJAX can be used for interactive communication with a database.

Example Explained - The showCustomer() Function
When a user selects a customer in the dropdown list above, a function called showCustomer() is executed. The
function is triggered by the onchange event:
showCustomer

function showCustomer(str) {
 var xhttp;
 if (str == "") {
 document.getElementById("txtHint").innerHTML = "";
 return;
 }
 xhttp = new XMLHttpRequest();
 xhttp.onreadystatechange = function() {
 if (this.readyState == 4 && this.status == 200) {
 document.getElementById("txtHint").innerHTML = this.responseText;
 }
 };
 xhttp.open("GET", "getcustomer.php?q="+str, true);
 xhttp.send();
}

The showCustomer() function does the following:
•Check if a customer is selected Create an XMLHttpRequest object Create the function to be executed when the
server response is ready Send the request off to a file on the server Notice that a parameter (q) is added to the URL
(with the content of the dropdown list)

Rails on Ajax

• AJAX stands for Asynchronous Javascript and XML. It is a
mixture of several technologies and is an important part of
Rails application. It allows client side changes without
reloading the page.

• Let us see the working of a normal web server. On typing a
web address and clicking on search, the browser makes a
request to the server. To assemble the searched page, it
fetches all associated assets like JavaScript files, images and
stylesheets. On clicking a link, same process is followed.
This is called 'request response cycle'.

• JavaScript makes request to the server, and parse the
response. It can update information on the page. On
combining these two abilities, a web page can be made
with JavaScript that can update just a part of itself, without
loading full page from the server. This technique is called
AJAX.

By default Rails ships with CoffeeScript.
Let us see an example code to make Ajax request using the jQuery
library
 $.ajax(url: "/test").done (html) ->
 $("#results").append html
The above code fetches data from "/test", then appends the result
to the div with an id of results.

Unobtrusive JavaScript
To handle attached JavaScript to the DOM, Rails uses "Unobtrusive
JavaScript" technique. This is considered as the best technique
within the frontend community.
This is called 'Unobtrusive' JavaScript because we do not mix
JavaScript code into HTML. With this, we can easily add behavior
to any link by adding data attribute. Lot of benefits add up like the
entire JavaScript is served on every page, it means it'll get
downloaded on the first page load and then can be cached on
every page after that.

